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Abstract
Exact solutions of Maxwell’s equations for three-dimensionally localized
helical pulses are given. These TE (transverse electric) pulses have e±iφ

azimuthal dependence. Their energy, momentum and angular momentum
are evaluated analytically. For e+iφ azimuthal dependence the angular
momentum is negative, despite the fact that the pulse energy density has a
right-handed helical structure.
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(Some figures in this article are in colour only in the electronic version)

There is much interest in the multidimensional states of
angular momentum which are in principle available in specially
prepared light pulses: for the purposes of communication, of
computation and of quantum cryptography. Mair et al [1]
have demonstrated the entanglement of the orbital angular
momentum states of photons. Molina-Terriza et al [2]
have proposed schemes for the preparation of photons in
multidimensional states of orbital angular momentum. Leach
et al [3, 4] have demonstrated an interferometric method for
measuring the orbital angular momentum of single photons.

The analytical approaches used so far have involved
the paraxial approximation. In this letter we shall give
exact solutions of Maxwell’s equations for a set of three-
dimensionally localized pulses with a helical structure. The
energy, momentum and angular momentum of these pulses
are evaluated exactly. The simple analytic structure of these
pulses may prove useful in the detailed analysis of the above-
mentioned experiments.

It is well-known that electromagnetic fields may be
constructed from any suitable solution of the wave equation
(∇2 − ∂2

t )ψ = 0 (we use the shorthand ∂t = c−1∂/∂t). For
example, the vector potential may be taken to be

A = ∇ × [0, 0, ψ] = [∂y,−∂y, 0]ψ (1)

and the scalar potential to be zero, in which case the electric
and magnetic fields are

E = −∂t A = [−∂y∂t , ∂x∂t , 0]ψ

B = ∇ × A = [∂x∂z, ∂y∂z,−∂2
x − ∂2

y ]ψ.
(2)

The electric field has only x and y components, so for a
pulse with net propagation in the z-direction, these fields are
transverse-electric (TE).

Ziolkowski [5] found a simple solution of the wave
equation, namely

ψZ = ab

ρ2 + [a − i(z + ct)][b + i(z − ct)]
ψ0 (3)

and this wavefunction was used by Feng et al [6] to construct
an electromagnetic pulse, using the vector potential A =
∇ × [ψ, 0, 0]. They evaluated the energy U of this pulse,
but not its momentum.

When the net momentum Pz was evaluated later [7], it
was found that U > cPz. This (perhaps surprizing) result
implied that the pulse could be Lorentz-transformed to a zero-
momentum frame (not a rest frame). It was later shown that
U > cPz for all three-dimensionally localized electromagnetic
pulses [8]. The physical reason is the necessary convergence or
spreading of localized solutions of the wave equation. The fact
that U > cPz is in contradistinction to the Einstein photon [9]
(for which energy is always c times the momentum, in any
Lorentz frame) indicates that the Einstein photon cannot be a
quantized version of a localized electromagnetic wavepacket.

We shall see that the TE pulse (and its dual, the TM pulse
obtained by the duality transformation E → B,B → −E)
have zero angular momentum whenψ = ψZ. This sameψ can
give nonzero angular momentum pulses, for example by taking
the complex vector potential to be [7] A = ∇ × [±iψ,ψ, 0].
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However, in this letter we shall examine electromagnetic TE
(or TM) pulses with A given by (1), in which ψ has explicit
azimuthal dependence.

Reference [10] showed how solutions of the wave
equation, with azimuthal dependence eimφ , may be obtained
by a generalization of the Hillion [11] set of solutions. Those
with eimφ azimuthal dependence are

ψ =
[

ρ

b + i(z − ct)

]|m|
eimφ f (s)

b + i(z − ct)
,

s = ρ2

b + i(z − ct)
− i(z + ct).

(4)

(Note m = 0 and f (s) = abψ0/(s+a)givesψZ.) In particular,
we shall explore the properties of TE pulses based on

ψ± = x ± iy

b + i(z − ct)
ψZ = ρe±iφ

b + i(z − ct)
ψZ. (5)

Consider first a TE pulse with vector potential given by (1) and
the consequent fields given by (2), and suppose thatψ has eimφ

azimuthal dependence. Differentiations with respect to x and
y then take the forms

∂x = cosφ∂ρ − ρ−1 sin φ∂φ → cos φ∂ρ − i(m/ρ) sin φ,

∂y = sinφ∂ρ + ρ−1 cos φ∂φ → sinφ∂ρ + i(m/ρ) cos φ.
(6)

From (2) and Eρ = Ex cosφ + Ey sin φ, Eφ = −Ex sinφ +
Ey cosφ we find that the complex electric field is

E = ρ̂Eρ + ϕ̂Eφ, Eρ = − im

ρ
∂tψ, Eφ = ∂ρ∂tψ.

(7)
The complex magnetic field has a longitudinal component as
well:

B = ρ̂Bρ + ϕ̂Bφ + ẑBz, Bρ = ∂ρ∂zψ,

Bφ = im

ρ
∂zψ, Bz =

(
−∂2

ρ − ρ−1∂ρ +
m2

ρ2

)
ψ.

(8)

(Physical fields are obtained by taking either real or imaginary
parts of these expressions.)

The angular momentum density is

j = r × p = 1

4πc
r × (E × B) (9)

where p is the momentum density. The total angular
momentum J has its component along the direction of P
(which is [0, 0, Pz ] in the cases considered here) invariant
under Lorentz boosts and under change of origin [12]. Now

Jz =
∫

d3r jz =
∫

d3r ρpφ (10)

where
4πcpφ = Ez Bρ − EρBz . (11)

When m = 0 we have Eρ = 0 by (7), and Ez is always zero
for TE pulses, so pφ and jz are zero when m = 0 (and in
particular for TE pulses with ψ = ψZ, hence the assertion
above that these pulses have zero angular momentum).

For the wavefunctions ψ± given in (5), we can evaluate
the total energy and momentum of the pulse,

U = 1

8π

∫
d3r (E2 + B2), cPz = 1

4π

∫
d3r (E × B)z

(12)
as well as the total angular momentum Jz given in (10). We
find, using the techniques of [7], for either the real or imaginary
parts of the complex fields in (7) and (8),

U = π

16

3a + b

b2
ψ2

0 , cPz = π

16

3a − b

b2
ψ2

0 ,

cJz = ∓π
8

a

b
ψ2

0 .

(13)

The upper sign is for m = +1, the lower for m = −1.
Note that the sign of Jz is opposite to what may

be expected: the m = +1 pulse wavefunction has
azimuthal dependence eiφ , and the quantum-mechanical
angular momentum operator Lz = −ih̄(r × ∇)z =
−ih̄∂φ has eiφ as an eigenstate, with eigenvalue +h̄.
Thus a particle with scalar wavefunction which has eiφ

azimuthal dependence will have positive angular momentum,
whereas our electromagnetic pulse composed of vector fields
derived from just such a wavefunction has negative angular
momentum.

The helicity of the electromagnetic pulse depends on the
sign of pφ , which for our TE pulse is given by the sign of
−EρBz . Consider wavefunctions of the form

ψ = eiφχ(ρ, z, t) ≡ eiφ(F + iG). (14)

This has real and imaginary parts

Re(ψ) = cosφF − sinφG, Im(ψ) = sin φF + cosφG.
(15)

Thus, from (7) and (8), taking the real parts as the physical
fields,

Eρ = Re(−iρ−1∂tψ) = ρ−1 Im(∂tψ), (16)

Bz = Re{(−∂2
ρ − ρ−1∂ρ + ρ−2)ψ} = Re{(∂2

z − ∂2
t )ψ} (17)

(the last equality follows from the fact thatψ satisfies the wave
equation). From (15), the average over φ of −ρEρBz is

1

2π

∫ 2π

0
dφ (−ρEρBz) = 1

2
(∂t F)(∂2

z − ∂2
t )G

− 1
2 (∂t G)(∂

2
z − ∂2

t )F. (18)

Since Jz is unchanged by Lorentz boosts along z [12], we may
transform to the zero-momentum frame L0 via

z = γ (z0 + βct0), ct = γ (ct0 + βz0),

γ = (1 − β2)−
1
2 , β = 3a − b

3a + b
.

(19)

(The transverse coordinates ρ and φ are unchanged by the
Lorentz transformation.) Then

z − ct = α−1(z0 − ct0), z + ct = α(z0 + ct0) (20)

where

α =
√

1 + β

1 − β
=

√
3a

b
. (21)
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Figure 1. Energy density (contours) and the transverse px and py momentum densities (arrows) in the z = 0 plane, at three times ct = −b,
0 and b, corresponding to (a), (b) and (c). The parameters in these and all other figures are m = +1, a = 2b.

energy and momentum pz, px densities, a=2b, y=0, ct= –b
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Figure 2. As for figure 1, but showing a longitudinal section (the y = 0 plane) and the longitudinal momentum component pz , as well as
one of the transverse momentum components (px ).
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Figure 3. As for figure 2, now showing the py transverse momentum component in the x = 0 plane. Note that in this figure, as in figures 1
and 2, the arrows representing momentum density have been enlarged at ct = ±b by a factor of 6, for better visibility.

The wavefunction in this frame has the effective length
parameters a0 = a/α = (ab/3)

1
2 , b0 = bα = (3ab)

1
2 :

ψ(ρ, φ, z0, t0) = ρeiφ

b0 + i(z0 − ct0)

× a0b0αψ0

ρ2 + [a0 − i(z0 + ct0)][b0 + i(z0 − ct0)]
. (22)

In L0 the expression (18) takes a negative-definite form at time
zero (Jz is independent of time [12]), and so the helicity is
negative, in all frames.

We note in passing that (22) holds for an arbitrary Lorentz
boost (i.e. any α), which can thus be viewed as equivalent to
changing a to a/α, b to bα and ψ0 to αψ0. Making those
replacements in the expressions in (13) leaves Jz unchanged,
in accord with its Lorentz-invariance.

The helical nature of the pulses considered here is shown
in energy density and momentum density plots (the latter also
give the energy flux density, or Poynting vector, which is c2

times the momentum density). Figures 1–3 show the energy
density contours and the px , py and pz momentum densities
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Figure 4. The energy density of the pulse, in the z = 0 (focal) plane
at time t = b/c. Note the two arms of the energy density surface.

Figure 5. The energy density isosurface, u = 1
2 umax, at t = b/c.

Note the two short right-handed screw threads which together make
up the energy isosurface.

at the three times ct = −b, 0, b. Time zero corresponds to the
pulse being centred on its focal region (at the origin). Figure 4
shows the distribution of energy in the z = 0 (focal) plane
at time t = b/c, while figure 5 is an isosurface of the energy
density at the same time. Figures 1(a), (c) and 5 together reveal
the twists in the pulse: two short right-handed screw threads.
Note that the figures are for the m = +1 pulse, which has
negative Jz (which in the quantum particle case would imply
a negative helicity), but the pulse twist is right-handed.

The helical structure of the pulses studied here correlates
counterintuitively with their angular momentum. In the
case of light beams, Allen et al [13] have shown that
circularly polarized Laguerre–Gaussian beams with azimuthal
dependence eimφ have total angular momentum Jz proportional
to +h̄m plus a spin component. An experimental demonstration
of the effect of orbital and spin angular momentum was
provided by O’Neil et al [14]. A recent calculation of (inter
alia) the angular momentum of three types of generalized
Bessel beams [15] also shows a component of Jz proportional
to m. However, Molina-Terriza et al [16] have reported the
transformation of a beam to one in which Jz and m have
opposite signs.

There are other interesting aspects of the angular
momentum of electromagnetic pulses:

(i) the wavefunction need not have an azimuthal dependence
for the angular momentum to be nonzero; an example
is provided by the pulses with vector potential A =
∇ × [±i, 1, 0]ψZ in [7], and

(ii) pulses based on a wavefunction with azimuthal
dependence need not have a helical structure, even when
their angular momentum is nonzero: for example the
TE + iTM pulses based on ψ± have exactly twice the
values of total energy, momentum and angular momentum
given in (13), and yet their energy density u and
momentum densities pz , pρ and pφ are all independent
of φ [10].
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