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Abstract
The force on a single scatterer can be calculated from the momentum transfer
cross-section. A conglomerate of two or more scatterers will also have an
effective momentum transfer cross-section, but this provides only the total
force on the conglomerate. To calculate the forces on the individual scatterers
we need to apply the recently introduced momentum flux density tensor (the
quantum analogue of the Maxwell stress tensor in electrodynamics). We show
that, for a single scatterer, the use of the momentum flux density tensor in
the near field reproduces the force calculated from the far-field scattering
amplitude.

1. Introduction

Suppose the interaction between a scatterer and the particles in a beam is central, i.e. given by a
potential V (r). Schrödinger’s equation for the particles (of mass m and energy E = h̄2k2/2m)
reads [

− h̄2

2m
∇2 + V (r)

]
ψ = Eψ. (1)

The solution outside the range of V (r) appropriate to an incoming plane wave beam ψ0 = eikz

(and to a scatterer held at the origin) is the well-known partial wave series [1]

ψ(r, θ) =
∞∑

�=0

(2� + 1)i� eiδ� [cos δ�j�(kr) − sin δ�n�(kr)]P�(cos θ) (2)

where δ� are the phase shifts, j� and n� are spherical Bessel functions and P� are Legendre
polynomials. The total wavefunction ψ is the sum of the incident wave

eikz =
∞∑

�=0

(2� + 1)i�j�(kr)P�(cos θ) (3)

and the scattered wave ψs , which has the far-field form

ψs(r, θ) → r−1f (θ) eikr . (4)

0953-4075/05/213849+08$30.00 © 2005 IOP Publishing Ltd Printed in the UK 3849

http://dx.doi.org/10.1088/0953-4075/38/21/007
http://stacks.iop.org/JPhysB/38/3849


3850 J Lekner

The scattering amplitude f (θ) is given by

f (θ) = k−1
∞∑

�=0

(2� + 1) eiδ� sin δ�P�(cos θ). (5)

The force on the scatterer is the rate of transfer of momentum, by Newton’s law. An
incoming beam particle has momentum h̄kz = h̄k; scattering through angle θ changes this
to h̄k′

z = h̄k cos θ , so the momentum transfer to the scatterer is h̄k(1 − cos θ) in the forward
direction. The force on the scatterer is the rate of change of momentum within the beam,

force = n
h̄k

m
σph̄k = 2nEσp (6)

where n is the particle density in the beam, h̄k/m is their speed, h̄k is the momentum per
particle and σp is the momentum transfer cross-section

σp = 2π

∫ π

0
dθ sin θ(1 − cos θ)|f (θ)|2. (7)

With the use of (we write C for cos θ )∫ 1

−1
dCP�(C)P�′(C) = 2

2� + 1
δ�′,�

(8)∫ 1

−1
dCCP�(C)P�′(C) = 2(� + 1)

(2� + 1)(2� + 3)
δ�′,�+1 +

2�

(2� − 1)(2� + 1)
δ�′,�−1

one finds [2]

σp = 4π

k2

∞∑
�=0

(� + 1) sin2(δ� − δ�+1). (9)

When we consider extensions of this standard scattering theory to groups of two or more
scatterers, it is immediately apparent that although the total force on the group may in principle
be calculated from a generalized momentum transfer cross-section, the forces on individual
scatterers cannot. This is because the new scattering amplitude f (θ, φ) is found from the total
far-field scattered part of the wavefunction, which is a coherent superposition of the waves
originating in the scattering conglomerate, multiply scattered waves being included. Thus,
the total wavefunction is truly ‘entangled’, and the force on an individual scatterer cannot be
disentangled from the far-field scattering amplitude.

On the other hand, one may draw a closed surface (not necessarily a sphere) around an
individual scatterer, and calculate the rate of momentum transfer through this surface by means
of the momentum flux density tensor. In general, such a computation may have to be done
numerically, but by this means it is possible in principle to calculate the force acting on each
of the scatterers. To demonstrate the validity of such an approach, we shall verify in this note
that the momentum flux density tensor method reproduces the force on an isolated scatterer,
equations (6) and (9).

2. Force from the momentum flux density tensor

The momentum flux density tensor was introduced [3] in the context of momentum
conservation in atomic beams. It is defined in analogy with the Maxwell stress tensor of
electrodynamics [4, 5]. Let a particle field be characterized by the wavefunction �(r, t), and
define a real momentum density p(r, t) for this state by [3]

p(r, t) = 1
2 {�∗p̂� + �(p̂�)∗} (10)
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Figure 1. Scattering of a wide beam, incident from the left, by a hard sphere; ka = 2, so the
wavelength in the undisturbed beam is π times the sphere radius. The contours and shading show
the probability density |�|2; the arrows represent the momentum density or the probability density
current (both of which are proportional to Im(�∗∇�)). In this paper we show that the force on
the scatterer may be calculated as an integral over a closed surface drawn anywhere outside the
range of the scatterer potential (in this case, anywhere outside r = a).

where p̂ is the momentum operator −ih̄∇; thus

p(r, t) = ih̄

2
{�∇�∗ − �∗∇�} = h̄ Im(�∗∇�) = mJ(r, t) (11)

where J is the probability flux density. A direct consequence of Schrödinger’s equation is the
continuity equation [1]

∂|�|2
∂t

+ ∇ · J = 0. (12)

Figure 1 shows the probability density |�|2 and the momentum density p = h̄ Im(�∗∇�)

in the neighborhood of an impenetrable sphere scattering a wide beam (i.e., one represented
by the plane wave eikz far from the scatterer).

In [3] it is shown that the conservation of momentum is expressed in three equations of
the same form, namely

∂pi

∂t
+

∑
j

∂j τij = fi, (i, j = x, y, z) (13)
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where τij are elements of a momentum flux density tensor,

τij = h̄2

2m

{
(∂i�

∗)(∂j�) + (∂i�)(∂j�
∗) − 1

2
∂i∂j (�

∗�)

}

= h̄2

2m
Re{(∂i�

∗)(∂j�) − �∗∂i∂j�}. (14)

This tensor is real and symmetric. It is different from the ‘stress tensor for the probability
fluid’, introduced by Madelung in 1926 [6, 7],

Tij = h̄2

4m
[∂i∂j (�

∗�) − (�∗�)−1∂i(�
∗�)∂j (�

∗�)]. (15)

In the conservation law (13), fi stands for a component of the force density. We shall calculate
the z-component of the force on a scatterer in a beam propagating in the z direction. If the
beam does not fluctuate we have ∂pi/∂t = 0, i.e. the momentum density is a constant vector
at a given point in space. The z-component of the total force exerted on the particles in the
beam by the scatterer is thus

Fz =
∫

d3r fz =
∑

j

∫
d3r ∂j τjz =

∑
j

∫
dSjτjz (16)

where the integration is over some volume including the scatterer, and then over the surface
bounding this volume (these integrals are equal by the tensor generalization of the Gauss
divergence theorem).

3. Force on a spherical scatterer

We now specialize to a spherical surface, at radius r from the centre of the scatterer. The
surface area element is

dS = r̂r2 d� = r[x, y, z] d� (17)

where d� is an element of solid angle, and r̂ = r/r . Thus

Fz = r

∫
d�{xτxz + yτyz + zτzz}. (18)

Let ψ(r, θ) be the total wavefunction, as given in (2), of the beam plus the scattered wave. In
the steady state being considered, �(r, t) = ψ(r, θ) e−iωt and the only time dependence is in
the phase factor. Thus, for example,

τxz = h̄2

2m

{
(∂xψ

∗)(∂zψ) + (∂zψ
∗)(∂xψ) − 1

2
∂x∂z(ψ

∗ψ)

}

= h̄2

2m
cos φ

{
(∂ρψ

∗)(∂zψ) + (∂zψ
∗)(∂ρψ) − 1

2
∂ρ∂z(ψ

∗ψ)

}
(19)

where ρ2 = x2 + y2, and we have used the fact that ψ is independent of the azimuthal angle
φ, and the first of the pair

∂x = cos φ∂ρ − sin φ

ρ
∂φ, ∂y = sin φ∂ρ +

cos φ

ρ
∂φ. (20)

Since x = ρ cos φ, y = ρ sin φ, the cylindrical-polar version of 2m

h̄2 [xτxz + yτyz + zτzz] is

ρ
[
(∂ρψ

∗)(∂zψ) + (∂zψ
∗)(∂ρψ) − 1

2∂ρ∂z(ψ
∗ψ)

]
+ z

[
2(∂zψ

∗)(∂zψ) − 1
2∂2

z (ψ∗ψ)
]
. (21)
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Because of the assumed spherical symmetry of an individual scatterer, it is convenient to
further transform to spherical polars, via

∂z = cos θ∂r − sin θ

r
∂θ , ∂ρ = sin θ∂r +

cos θ

r
∂θ . (22)

The expression for Z = 2m

h̄2 [xτxz + yτyz + zτzz] then becomes

Z = r cos θ
{|∂rψ |2 − Re

(
ψ∗∂2

r ψ
)}

+ sin θ Re

{
ψ∗(∂r∂θψ) − (∂rψ

∗)(∂θψ) − 1

r
ψ∗(∂θψ)

}

= rC
{|∂rψ |2 − Re

(
ψ∗∂2

r ψ
)}

− (1 − C2) Re

{
ψ∗(∂r∂Cψ) − (∂rψ

∗)(∂Cψ) − 1

r
ψ∗(∂Cψ)

}
(23)

where C = cos θ as in (8). (These expressions remain valid when ψ does depend on φ.) The
total force is thus

Fz = r
h̄2

2m

∫
d�Z = r

h̄2

2m
2π

∫ π

0
dθ sin θZ = r

h̄2

2m
2π

∫ 1

−1
dC Z. (24)

Note that the force in (24) is the negative of the force on the scatterer, since it gives the total
force on the beam.

In the absence of the scatterer ψ → eikz = eikrC , and Z → 2k2rC; the angular integral
in (24) is thus zero, as it must be. However, one expects a zero contribution to the force,
everywhere: when ψ → eikz, τxz, τyz → 0, τzz → h̄2k2

m
, and fz = ∂xτxz + ∂yτyz + ∂zτzz → 0,

so the force density is zero. This apparent discrepancy (zero force density, but nonzero
integrand in (24)) may be reconciled by noting that in the application of Gauss’ divergence
theorem one may add or subtract a vector of zero divergence:∫

dS · (A + B) =
∫

dV ∇ · A when ∇ · B = 0. (25)

In the free beam case the only non-zero part of the tensor τij is τ (0)
zz = h̄2k2/m, a constant. The

divergence free vector with elements τ
(0)
iz may be subtracted from τiz in Z, and so 2k2rC = 2k2z

may be subtracted from (23), and then the integrand in the force expression (24) will be
identically zero in the absence of the scatterer.

We now have two tasks: to verify (i) that (24) gives a total force which is independent
of r, and (ii) that this force is in agreement with the known result contained in (6) and (9).
(In both cases it is understood that the spherical surface we are integrating over is to be
outside of the potential V (r).) These tasks are carried out in the appendix, which verifies
that the momentum flux density tensor route to the force reproduces the momentum transfer
cross-section expression.

4. Discussion

We have applied the recently introduced momentum flux density tensor to the calculation of
the force due to scattering. For a single spherical scatterer the net force was expressed as
a surface integral involving spatial derivatives of the wavefunction. The integration can be
over any closed surface surrounding the scatterer, outside the range of the interaction. For
a spherical surface the force was shown to reduce to the known expression involving the
momentum transfer cross-section, at any radius of the integration surface.

The method is intended for application to groups of scatterers, for which the momentum
transfer cross-section method will give the net force on the group, but not the forces on the
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individual particles. Provided that the beam–scatterer interaction potential has finite range, and
that the scatterers are separated by more than this range, it is possible to apply the momentum
flux density tensor method to calculate the forces on each of the scatterers. A surface can
be drawn around each scatterer, outside the range of its potential energy and of the potential
energies of the other scatterers, and the sum

∑
j

∫
dSjτij will give the ith component of the

force exerted by that scatterer on the particles in the beam.
It is hoped that this formulation will prove useful in the study of the interaction of atom

beams with scatterers [8]. It may even be possible to realize the atom-beam analogue of
‘optical binding’ [9, 10], in which dielectric particles in optical beams experience mutual
binding forces. In fact, part of the motivation behind this work is to develop the momentum
flux density tensor method (the quantum analogue of the Maxwell stress tensor) in order to
be able to apply the electromagnetic analogue to the optical binding situation, especially in
counter-propagating coherent beams [11].

Appendix. Evaluation of the force integral

We wish to evaluate the angular integral in (24), and then to simplify the resulting sum over
partial waves. The wavefunction ψ(r, θ), given in (2), can be written as

ψ(r, θ) =
∞∑

�=0

f�(kr)P�(cos θ),

(A.1)
f�(kr) = (2� + 1)i� eiδ� [cos δ�j�(kr) − sin δ�n�(kr)] .

We note that ∂Cψ has the angular parts

dP�

dC
= � + 1

1 − C2
(CP� − P�+1). (A.2)

Thus, from (8) and (23), the integration over θ or C = cos θ reduces the double sum over
partial waves � and �′ to a single sum, containing products of the � and �+ 1 terms. We rewrite
the second equality in (8) as∫ 1

−1
dCCP�P�′ = α�+1δ�′,�+1 + α�δ�′,�−1, α� = 2�

(2� − 1)(2� + 1)
. (A.3)

We also write ḟ �(ρ) for df�(ρ)/dρ, etc. Then ∂rψ = k�ḟ �P� and∫ 1

−1
dCC|∂rψ |2 = k2

∞∑
�=0

ḟ ∗
�(α�+1ḟ �+1 + α�ḟ �−1)

= k2
∞∑

�=0

α�+1(ḟ
∗
�ḟ �+1 + ḟ ∗

�+1ḟ �) (A.4)

since α0 = 0. Likewise∫ 1

−1
dCCψ∗∂2

r ψ = k2
∞∑

�=0

f ∗
� (α�+1f̈ �+1 + α�f̈ �−1)

= k2
∞∑

�=0

α�+1(f
∗
� f̈ �+1 + f ∗

�+1f̈ �). (A.5)

We can write f�(kr) as a complex constant times a real function,

f� = a�g�, a� = (2� + 1)i� eiδ� , g� = cos δ�j�(kr) − sin δ�n�(kr). (A.6)
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The complex constants a� will occur in our force expression (24) in the combination a∗
� a�+1

and its complex conjugate, both of which have the real part

Re(a∗
� a�+1) = Re(a�a

∗
�+1) = (2� + 1)(2� + 3) sin(δ� − δ�+1). (A.7)

Also α�+1(2� + 1)(2� + 3) = 2(� + 1). Hence∫ 1

−1
dCC

{
(∂rψ)2 − Re

(
ψ∗∂2

r ψ
)}

= 2k2
∞∑

�=0

(� + 1) sin(δ� − δ�+1){2ġ�ġ�+1 − g�g̈�+1 − g̈�g�+1}. (A.8)

In the remaining part of (24) we have, using (A.2),

k Re
∫ 1

−1
dC

∞∑
�=0

∞∑
�′=0

(� + 1)(CP� − P�+1)P�′[f ∗
�′ ḟ � − ḟ ∗

�′f� − (kr)−1f ∗
�′f�]

= k Re
∞∑

�=0

(� + 1)

{(
α�+1 − 2

2� + 3

)
[f ∗

�+1ḟ � − ḟ ∗
�+1f� − (kr)−1f ∗

�+1f�]

+ α�[f ∗
�−1ḟ � − ḟ ∗

�−1f� − (kr)−1f ∗
�−1f�]

}
. (A.9)

Now

(� + 1)

[
α�+1 − 2

2� + 3

]
= −�α�+1. (A.10)

So, on changing the summation index in the α� term (as we did in (A.4) and (A.5)), (A.9)
reduces to

k Re
∞∑

�=0

α�+1{(� + 2)[f ∗
� ḟ �+1 − ḟ ∗

�f�+1 − (kr)−1f ∗
� f�+1]

− �[f ∗
�+1ḟ � − ḟ ∗

�+1f� − (kr)−1f ∗
�+1f�]}

= 2k

∞∑
�=0

(� + 1) sin(δ� − δ�+1){(� + 2)[g�ġ�+1 − ġ�g�+1 − (kr)−1g�g�+1]

− �[g�+1ġ� − ġ�+1g� − (kr)−1g�+1g�]}

= 2k

∞∑
�=0

(� + 1) sin(δ� − δ�+1){(2� + 2)(g�ġ�+1 − ġ�g�+1) − 2(kr)−1g�g�+1}.

(A.11)

Thus, the force integral
∫ 1
−1 dC(23) is equal to

2k

∞∑
�=0

(� + 1) sin(δ� − δ�+1){kr[2ġ�ġ�+1 − g�g̈�+1 − g̈�g�+1]

− (2� + 2)(g�ġ�+1 − ġ�g�+1) + 2(kr)−1g�g�+1}. (A.12)

The spherical Bessel functions j�(ρ) and n�(ρ) have the derivatives

ḃ� = �

ρ
b� − b�+1, b̈� = 2

ρ
b�+1 −

[
1 − �(� − 1)

ρ2

]
b�

ḃ�+1 = b� − � + 2

ρ
b�+1, b̈�+1 = −2

ρ
b� −

[
1 − (� + 2)(� + 3)

ρ2

]
b�+1.

(A.13)
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We also need the identity

j�+1(ρ)n�(ρ) − j�(ρ)n�+1(ρ) = ρ−2. (A.14)

Substitution into (A.12) reduces the contents of the braces to

2(kr)−1(sin δ�+1 cos δ� − cos δ�+1 sin δ�) = −2(kr)−1 sin(δ� − δ�+1) (A.15)

Hence the force exerted on the beam by the scatterer is (for unit density of particles in the
incident beam, i.e. with |ψ |2 normalized to unity)

Fz = −h̄2k2

2m
2σp = −2Eσp (A.16)

where σp is the momentum transfer cross-section defined in (7) and (9). The above expression
is in accord with the force on the scatterer given in (6).
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