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Abstract
Counter-propagating coherent beams produce fringes, with intensity
proportional to cos2 kz in the plane wave case. A scatterer placed in the
fringing field experiences a force, except when centred on an intensity
maximum or minimum. We show that, for displacement b from an intensity
maximum, the force is sin 2kb times a force factor. The force factor is
independent of b, and depends on the interaction of the spherical scatterer
with a (unidirectional) plane wave. This result is universal for spherical
scatterers, and holds in both the quantum particle and electromagnetic cases.
For a given type of scatterer, the force factor depends on the ratio of scatterer
size to wavelength in an oscillatory way, so for different radius/wavelength
values the scatterer may be in stable equilibrium at intensity maxima or at
intensity minima, or may even not feel a force at all.

Keywords: radiation forces, optical tweezers

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The motivation for this study comes from the experiments
of Mellor and Bain [1] on micron-sized dielectric spheres
trapped in the evanescent field of coherent counter-
propagating electromagnetic waves. Potential applications are
manipulation of sphere arrays, creation of tunable diffraction
gratings, micron-sized particle conveyor-belts, and the study
of two-dimensional colloidal crystals. Earlier works with such
particles in evanescent fields had the radiation propagating in
one direction only [2–4]. One might think at first that there
should be no force along the direction or propagation when
two equal beams (evanescent or not) oppose each other. This
is not so: the two beams, being coherent, produce interference
fringes, and the net transfer of momentum from fields to
particle is not zero in general, unless the (spherical) particle
happens to be at an interference maximum or minimum. We
shall show that, in both the quantum scalar case and the vector
electromagnetic case, the force on a spherical particle has the
form

f (k, s, b) = F(k, s) sin 2kb (1)

where k = 2π/λ, s denotes parameters characterizing the
interaction of the beams with the scatterer (such as its radius),

and b is the distance between the scatterer centre and a
constructive interference maximum. The result (1) may
equivalently be written as

f (k, s, b) = ∂U

∂b
, U (k, s, b) = −k−1 F(k, s) cos2 kb;

(2)
i.e. an effective potential proportional to cos2 kb quantifies the
interaction of the sphere with the coherent counter-propagating
beams. (The sign in (2) is in accord with our choice of moving
the fringes, and keeping the scatterer fixed at the origin.)

We shall derive expressions for the force factor in both the
scalar (Schrödinger) and vector (Maxwell) cases, in sections 3
and 6, respectively. In both cases the force factor is given
in terms of parameters characterizing the interaction of the
scatterer with a plane wave. These are respectively the partial
wave phase shifts δ� , and the Mie–Debye coefficients a� , b�. To
introduce the notation and method, we begin with a calculation
of the force on a scatterer in a unidirectional quantum beam.

2. Force on a scatterer in a particle beam

Let the interaction potential between the scatterer and the
particles forming the beam be V (r) (we assume a central
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interaction, with the scatterer fixed at the origin). The
Schrödinger equation for a monoenergetic beam of particles
of mass m and energy e = h̄2k2/2m,(

∇2 + k2 − 2mV

h̄2

)
ψ = 0, (3)

is solved, outside the range of V , by

ψ(r, θ) =
∞∑
�=0

(2� + 1)i�eiδ� [cos δ� j�(kr)

− sin δ�n�(kr)]P�(cos θ). (4)

(Standard notation for phase shifts δ�, spherical Bessel
functions j� and n�, and Legendre polynomials P� is being
used: see for example [5] (section 19).) The form of (4) is
determined by the requirement that for large kr the wave should
consist of the incident plane eikz plus a spherically diverging
scattered wave r−1eikr f (θ), where f (θ) is the scattering
amplitude. From (4) and the asymptotic forms of the spherical
Bessel functions one finds

f (θ) = k−1
∞∑
�=0

(2� + 1)eiδ� sin δ�P�(cos θ). (5)

The phase shifts δ� of the partial waves are determined
by solving Schrödinger’s equation inside the scatterer, and
matching with (4) which holds outside the scatterer. For
example, an impenetrable sphere of radius a has ψ = 0 for
r � a, which gives

tan δ� = j�(ka)

n�(ka)
. (6)

To find the force exerted by a single beam (represented
by the plane wave eikz) on a scatterer, one calculates the
momentum transfer cross-section

σ = 2π
∫ π

0
dθ sin θ(1 − cos θ)| f (θ)|2. (7)

With the use of (we write C for cos θ )∫ 1

−1
dC P�(C)P�′ (C) = 2

2� + 1
δ�′,�

∫ 1

−1
dC C P�(C)P�′ (C) = 2(� + 1)

(2� + 1)(2� + 3)
δ�′,�+1

+
2�

(2� − 1)(2� + 1)
δ�′,�−1

(8)

one finds [6]

σ = 4π

k2

∞∑
�=0

(� + 1) sin2(δ� − δ�+1). (9)

The z-component of the momentum of a particle within the
beam, when scattered through angle θ , changes from h̄kz = h̄k
to h̄k ′

z = h̄k cos θ , so it is decreased (in the forward direction)
by the factor 1 − cos θ : hence the definition (7). The force
on the scatterer due to scattering is the rate of change of
momentum within the beam, namely

force = N
h̄k

m
σ h̄k = 2Neσ (10)

where N is the particle density (number per unit volume) in the
incident beam, h̄k/m is their speed, σ is the effective scatterer
area for transfer of momentum, and h̄k is the momentum per
particle in the beam.

3. Force on a scatterer in counter-propagating
particle beams

A plane wave eikz incident on a spherical scatterer fixed at the
origin produces a scattered wave ψs(r, θ) ≡ ψ(r, θ) − eikz .
From (4) and the spherical Bessel expansion of a plane wave,

eikz =
∞∑
�=0

(2� + 1)i� j�(kr)P�(cos θ), (11)

one finds the asymptotic form ψs(r, θ) → r−1eikr f (θ), with
the scattering amplitude f (θ) given in (5).

We now superpose the fields resulting from the counter-
propagating plane waves eik(z−b) and e−ik(z−b), which, in the
absence of the scatterer, would give the stationary (fringing)
field ψtotal = 2 cos k(z − b). We keep the scatterer fixed at
the origin. The wave propagating in the +z direction carries
the phase factor e−ikb , so its contribution to the scattered wave
does also. The wave propagating in the −z direction has the
phase factor eikb , and its scattering angle is π − θ . Thus the
total scattered wave is

ψ total
s = e−ikbψs(r, θ)+eikbψs(r, π−θ) → r−1eikr f (θ) (12)

where now the scattering amplitude f (θ) results from the
coherent superposition of the two scattered waves, with their
phase factors. It is

f (θ) = k−1
∞∑
�=0

(2� + 1)eiδ� sin δ�P�(cos θ)[e−ikb + (−)�eikb]

(13)
where we have used P�(−C) = (−)�P�(C).

The force on a scatterer is not given by substituting the
new f (θ) into (7): the momentum transfer along +z produced
by scattering the eik(z−b) wave through θ is h̄k(1 − cos θ),
while the momentum transfer along +z produced by scattering
the e−ik(z−b) wave through π − θ is −h̄k(1 − cos(π − θ)) =
−h̄k(1 + cos θ), the total momentum z-component transferred
to the scatterer being −2h̄k cos θ . The effective momentum
transfer cross-section is thus

σ̃ = −4π
∫ π

0
dθ sin θ cos θ | f (θ)|2 (14)

where f (θ) is given by (13). We have

| f (θ)|2 = k−2
∑
�

∑
�′
(2� + 1)(2�′ + 1)

× sin δ� sin δ�′ g∗
� g�′ P�(cos θ)P�′(cos θ) (15)

where
g� ≡ eiδ�[e−ikb + (−)�eikb]. (16)

The second equality in (8) reduces the double sum in σ̃ to

σ̃ = −8π

k2

∞∑
�=0

(� + 1) sin δ� sin δ�+1(g
∗
� g�+1 + g∗

�+1g�). (17)

Now

g∗
�g�+1 + g∗

�+1g� = 4(−)�+1 sin(δ� − δ�+1) sin 2kb (18)

so

σ̃ = sin 2kb

(
32π

k2

) ∞∑
�=0

(� + 1)(−)�

× sin δ� sin δ�+1 sin(δ� − δ�+1). (19)
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Figure 1. Contours of |ψ|2 for the near field of a hard sphere
(ka = 2), illuminated from the left. The upstream maximum
location follows from approximating the incident plus reflected
waves along the negative z axis as eikz + re−ikz , with the reflection
amplitude r = −e−2ika , to make this total wavefunction zero at
z = −a. Thus on the negative z axis ψ ≈ 2ie−ika sin k(z + a), with
maximum intensity at k(z + a) ≈ −π/2, etc. The first maximum is
at k|z| ≈ ka + π/2 which is approximately 3.57 for the case
illustrated.

The force on the scatterer in the coherent counter-propagating
beams is thus given by a force factor times sin 2kb,

force = 2Neσ̃ ≡ 2Ne A sin 2kb, (20)

where A represents an effective area (which can be negative)
for the transfer of momentum to the scatterer in the counter-
propagating beams,

A = 32π

k2

∞∑
�=0

(� + 1)(−)� sin δ� sin δ�+1 sin(δ� − δ�+1). (21)

4. An example: force on an impenetrable sphere

Figures 1 and 2 show the value of |ψ |2 near a hard sphere, for
which the phase shifts are given by (6), for the unidirectional
and counter-propagating beam cases. When the scatterer is
small compared to the wavelength λ = 2π/k (i.e. when ka �
1), the phase shifts decrease rapidly with �: δ� ∼ (ka)2�+1 [5].
The leading terms, arising from δ0 ≈ −ka and δ1 ≈ −(ka)3/3,
give

A

πa2
≈ −32

3
(ka)3. (22)

This is small, and negative. The effective potential U of
equation (2) is, from (20),

U = −k−12Ne A cos2 kb. (23)

Thus an impenetrable sphere with radius small compared to
the fringe spacing will have effective potential proportional
to + cos2 kb, and will be in stable equilibrium at the potential
minima where cos kb = 0, i.e. at the null planes of the fringes,
as expected.

As the sphere size is increased, the position of stable
equilibrium does not remain at the position of negative

interference, however. From (6) we have

sin δ� = j�
m�

, cos δ� = n�
m�

(m2
� ≡ j 2

� + n2
�) (24)

(argument ka is understood), and

sin δ� sin δ�+1 sin(δ� − δ�+1) = −(ka)−2 j� j�+1

m2
�m

2
�+1

(25)

where we have used j�n�+1 − n� j�+1 = −(ka)−2. Thus, for
hard spheres,

A

πa2
= − 32

(ka)4

∞∑
�=0

(� + 1)(−)� j� j�+1

m2
�m

2
�+1

. (26)

The net force on the sphere is (for a given value of sin 2kb)
proportional to A, which is plotted in figure 3. We see that
there are alternating negative and positive regions. Up to
ka ≈ 2.445 the sphere prefers to sit at planes of negative
interference, but from ka ≈ 2.445 to 3.985 it prefers to be
centred at the positions of maximum intensity, and so on. At
the crossover points (ka ≈ 2.445, 3.985, . . .) there is zero
force on the sphere, everywhere.

When the sphere is large compared to the wavelength
(ka 
 1) the spherical Bessel functions take their asymptotic
values

j�(ka) → (ka)−1 cos(ka − (� + 1)π/2)

n�(ka) → (ka)−1 sin(ka − (� + 1)π/2)
(27)

up to � of order ka, and then the j�(ka) rapidly fall to zero.
Thus, for � � ka we have

j� j�+1

m2
�m

2
�+1

→ 1

2
(ka)2(−)�+1 sin 2ka (28)

and the effective area for the transfer of momentum in counter-
propagating beams takes the asymptotic value

A → 32πa2

(ka)4
1

2
(ka)2 sin 2ka

ka∑
�=0

(� + 1) ≈ 8πa2 sin 2ka.

(29)
Thus, at fixed frequency and with sphere size increasing, the
effective sphere area oscillates with increasing amplitude. The
ratio A/πa2 oscillates, with fixed amplitude.

5. Force on a dielectric sphere in an electromagnetic
beam

The solution of a problem of scattering of electromagnetic
waves by a sphere is usually associated with the names of
Mie [7] and Debye [8]. However, as Logan [9] and Kerker [10]
point out in their historical notes, several earlier authors also
deserve credit, notably Clebsch (in 1863) and Lorenz (in 1890).
The theory is treated in several texts [11–14]. We shall follow
the notation of van de Hulst [12] with minor changes, the main
one being that the time dependence of the complex fields is
taken to be e−iωt instead of eiωt , so that the incident plane
wave is ei(kz−ωt) , for example. The key results are given in the
appendix.
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(a) (b)

(c)

Figure 2. All three figures show contours of |ψ|2 for an impenetrable sphere in the stationary field of two counter-propagating beams
eik(z−b) + e−ik(z−b) = 2 cos k(z − b). The sphere size relative to the wavelength is the same as in figure 1, a = λ/π . The sphere remains at the
origin; the fringes shift as b changes. In (a) b is zero, so the sphere is located at what would be a maximum intensity position in its absence.
In (b) kb = π/2, so the sphere sits halfway between intensity maxima. In (c) the sphere is at a position of maximum force: kb = π/4 and
sin 2kb is unity.

Figure 3. A/πa2 for a hard sphere, calculated from (26). Negative
A corresponds to a force in the direction of negative z, if
sin 2kb > 0. Thus the negative value corresponding to ka = 2
implies that the force on the sphere in figure 2(c) is to the left.

For a plane electromagnetic incident wave propagating in
the +z direction and polarized in the x direction, the transverse
components of the scattered wave are, in the far field (kr 
 1),

Eθ = Bφ = 1

ikr
ei(kr−ωt) cos φS2(θ)

−Eφ = Bθ = 1

ikr
ei(kr−ωt) sin φS1(θ)

(30)

where S1 and S2 are sums over the usual exterior wave complex
coefficients a� and b�:

S1 =
∞∑
�=1

2� + 1

�(� + 1)
{a�π� + b�τ�},

S2 =
∞∑
�=1

2� + 1

�(� + 1)
{a�τ� + b�π�}.

(31)

The functionsπ� and τ� are given by (with cos θ = C as before)

π�(C) = dP�
dC

, τ�(C) = Cπ� − (1 − C2)
dπ�
dC

. (32)

Equivalent expressions, not containing derivatives, are

π� = � + 1

1 − C2
(C P� − P�+1), τ� = �(� + 1)P� − Cπ�.

(33)
Thus π� and τ� may be generated directly from P0 = 1,
P1 = C, and the recurrence relation

(2� + 1)C P� = (� + 1)P�+1 + �P�−1. (34)

The time-averaged radial component of the Poynting
vector is
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1

2(kr)2
{sin2 φ|S1|2 + cos2 φ|S2|2}. (35)

From this one obtains, operating with
∫

r 2 d� =
r 2

∫ π
0 dθ sin θ

∫ 2π
0 dφ, the total scattering cross-section σs, and

〈cos θ〉σs:

σs = π

k2

∫ 1

−1
dC(|S1|2 + |S2|2) (36)

〈cos θ〉σs ≡ π

k2

∫ 1

−1
dC C(|S1|2 + |S2|2). (37)

The integrations over θ reduce the double sums to single sums:
one finds [8]

σs = 2π

k2

∞∑
�=1

(2� + 1){|a�|2 + |b�|2} (38)

〈cos θ〉σs = 4π

k2

∞∑
�=1

{
�(� + 2)

� + 1
Re(a∗

�a�+1 + b∗
�b�+1)

+
2� + 1

�(� + 1)
Re(a∗

�b�)

}
. (39)

The extinction cross-section is the sum of the scattering and
absorption cross-sections, σe = σs + σa, and is given by
(see [12] (section 9.32))

σe = 2π

k2

∞∑
�=1

(2� + 1) Im(a� + b�). (40)

The cross-section for radiation pressure (arising from the
transfer of momentum) is σp = σe − 〈cos θ〉σs; in the case of
non-absorbing scatterers which is being considered here this
becomes

σp = [1 − 〈cos θ〉]σs, (41)

i.e. it is given by the difference between (38) and (39). When
the scatterer is in a beam with N quanta per unit volume, each
of energy e and momentum e/c, and each travelling at speed
c, the force on the scatterer is the rate of momentum transfer,
namely

force = Ncσpe/c = Neσp. (42)

We have written this down in parallel with the derivation of (10)
for the force on a scatterer in a particle beam. The more usual
expression is in terms of the magnitude of the Poynting vector,
S0, which gives the energy flux density (energy per unit area
per unit time). In terms of N and e, S0 = Nec, and so (42) is
equivalent to [8, 12, 14]

force = σp S0/c. (43)

6. Force on a dielectric sphere in
counter-propagating beams

We now consider the momentum transfer when a dielectric
sphere is in counter-propagating electromagnetic beams,
proportional to eik(z−b) and e−ik(z−b) respectively (adding to
2 cos k(z − b) before interaction with the scatterer). When the
wave propagating along +z scatters through angles θ and φ,
the wave propagating along −z has to scatter through π − θ

and −φ to go in the same direction. The scalar functions u and

v all have partial waves with angular dependence as follows
(see (A.4)–(A.6)):

u�(θ, φ) ∼ − sin θ cos φπ�(cos θ),

v�(θ, φ) ∼ sin θ sin φπ�(cos θ).
(44)

From P�(− cos θ) = (−)�P�(cos θ) and (32) or (33) we see
that

π�(− cos θ) = (−)�+1π�(cos θ),

τ�(− cos θ) = (−)�τ�(cos θ).
(45)

Thus
u�(π − θ,−φ) = (−)�+1u�(θ, φ),

v�(π − θ,−φ) = (−)�v�(θ, φ).
(46)

The eik(z−b) and e−ik(z−b) plane waves carry phase factors e−iβ

and eiβ(β = kb) relative to the scatterer placed at the origin.
Thus the total partial waves due to both beams have the form

[e−iβ + (−)�+1eiβ]u�(θ, φ) ≡ m�(β)u�(θ, φ)

[e−iβ + (−)�eiβ]v�(θ, φ) ≡ p�(β)v�(θ, φ).
(47)

In the case of the scattered partial waves, the scattering
coefficients are a� and b� for eikz incident. For eik(z−b) and
e−ik(z−b) incident the coefficients become a�m� and b� p�. The
transverse components of the fields in the scattered wave, when
kr 
 1, take the form (30), with S1 and S2 replaced by

T1 =
∞∑
�=1

2� + 1

�(� + 1)
{a�m�π� + b� p�τ�},

T2 =
∞∑
�=1

2� + 1

�(� + 1)
{a�m�τ� + b� p�π�}.

(48)

The momentum transfer from the field to the scatterer per
quantum carrying momentum e/c is (−2 cos θ)e/c, in parallel
with section 3, so the momentum transfer effective ‘cross-
section’, which may again be negative, is (cf (37) and (41))

σ̃p = −2π

k2

∫ 1

−1
dC C{|T1|2 + |T2|2}. (49)

In the integral in (49) two types of term will appear:∫ 1

−1
dC C(π�π�′ + τ�τ�′) = 2�2(� + 1)(� + 2)2

(2� + 1)(2� + 3)
δ�′,�+1

+
2(� − 1)2�(� + 1)2

(2� − 1)(2� + 1)
δ�′,�−1 (50)

∫ 1

−1
dC Cπ�τ�′ = �(� + 1)

2� + 1
δ�′,�. (51)

(These integrals were evaluated by Debye [8] in his
consideration of the radiation force on a dielectric sphere: they
were needed in the derivation of (39).) Thus (49) will contain
the following terms:

p∗
� p�±1 = −2i(−)� sin 2β = p∗

�m�

m∗
�m�±1 = 2i(−)� sin 2β.

(52)

242



Force on a scatterer in counter-propagating coherent beams

Figure 4. Contours of |ψ|2 for the near field around an attractive
square well, when a plane wave is incident from the left. The depth
of the well is chosen to correspond to a relative refractive index
of 1.2. The sphere diameter is of the same order as the wavelength
(ka = 3, 2a = 3λ/π), so ray optics does not correctly locate the
hot-spot, as noted in the text.

Let A� = 2�+1
�(�+1)a�m�, B� = 2�+1

�(�+1)b� p�. Then

|T1|2 + |T2|2 =
∑
�

∑
�′

{(A∗
�π� + B∗

� τ�)(A�′π�′ + B�′τ�′)

+ (A∗
�τ� + B∗

� π�)(A�′τ�′ + B�′π�′)}
=

∑
�

∑
�′

{(A∗
� A�′ + B∗

� B�′)(π�π�′ + τ�τ�′)

+ (A∗
�B�′ + B∗

� A�′ + B�A∗
�′ + A�B∗

�′)π�τ�′ }. (53)

Use of (50)–(52) gives, after some reduction,

σ̃p = 16π

k2
sin 2β

∞∑
�=1

(−)�

× Im

{
�(� + 2)

� + 1
(a∗
� a�+1 + b∗

�b�+1) +
2� + 1

�(� + 1)
a∗
�b�

}
. (54)

Note the similarity with Debye’s formula for 〈cos θ〉σs,
equation (39). The net force on the dielectric sphere thus
contains the sin 2kb factor:

force = σ̃p S0/c ≡ (AS0/c) sin 2kb (55)

where A (which can be negative) is the effective area for the
transfer of momentum to the scatterer:

A = 16π

k2

∞∑
�=1

(−)� Im

{
�(� + 2)

� + 1
(a∗
�a�+1 + b∗

�b�+1)

+
2� + 1

�(� + 1)
a∗
�b�

}
. (56)

The effective potential for the sphere in the fringing field is,
from (1), (2), and (55),

U = − AS0

kc
cos2 kb. (57)

When A is greater than zero, the preferred position for the
sphere is centred on the fringe maxima.

These results will be illustrated in section 8 for dielectric
spheres which are of similar size to the wavelength, but first
we shall look at the case of sphere size small compared to the
wavelength.

7. Long wavelength limit (Rayleigh scattering)

We consider non-absorbing spheres with real dielectric
constant ε. To order (ka)6 the non-zero coefficients are

a1 = 2

3

ε − 1

ε + 2
(ka)3 +

2

5

(ε − 1)(ε − 2)

(ε + 2)2
(ka)5

+ i
4

9

(ε − 1)2

(ε + 2)2
(ka)6 + O(ka)7

b1 = 1
45 (ε − 1)(ka)5 + O(ka)7

a2 = 1

15

ε − 1

(2ε + 3)
(ka)5 + O(ka)7.

(58)

The scattering cross-section in a unidirectional beam is
therefore, from (38),

σs = 2πa2

[
4

3

(
ε − 1

ε + 2

)2

(ka)4 + O(ka)6
]
. (59)

The leading term in 〈cos θ〉σs, given in (39), contains Re(a∗
1 a2)

and Re(a∗
1 b1), both of order (ka)8. Thus we regain the well-

known result (see for example [12] (section 6.3))

σp = [1−〈cos θ〉]σs = 8π

3
a2

[(
ε − 1

ε + 2

)2

(ka)4 +O(ka)6
]
.

(60)
The force is σp S0/c.

The force on a non-absorbing sphere in counter-
propagating beams is (AS0/c) sin 2kb, where A is given
by (56). The leading term in A when ε is real is of order
(ka)9, namely

64

135
πa2 (ε − 1)3

(ε + 2)2
ε + 3

2ε + 3
(ka)9. (61)

Nonabsorbing particles which are small compared to the
wavelength accordingly experience a force smaller by a factor
of order (ka)5 in a counter-propagating beam, compared to
the force in a unidirectional beam. The corresponding ratio in
quantum particle beams is of order (ka)3. Since A is positive
for small particles with ε > 1, and the effective potential in the
fringes is given by (57), we see that small dielectric spheres
will sit at fringe intensity maxima. (Small bubbles in a fluid
will be in stable equilibrium at intensity minima.)

8. Comparison of the quantum and electromagnetic
scattering in a particular case

The Mellor–Bain experiment [1] uses the evanescent wave of
an infrared Nd:YAG laser beam (λ = 1064 nm in vacuum),
retro-reflected to provide the pair of counter-propagating
beams. The evanescent waves are in water, with constructive
interference fringes spacedλ/2nwater ≈ 400 nm apart when the
angle of incidence is close to the critical angle. The spheres
are silica, with refractive index 1.60, so the relative silica/water
refractive index is 1.60/1.33 ≈ 1.20. The relative dielectric
constant ε is the square of this. The wavelength is shorter inside
the spheres; the corresponding quantum potential is therefore
an attractive square well, with depth V0 such as to make
1+ V0/e = ε, where e = h̄2k2/2m is the energy of a particle in
the beam (see for example section 1–3, equation (46), of [15]).
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(a) (b)

(c)

Figure 5. Contours of |ψ|2 for a soft sphere (parameters as in figure 4) in counter-propagating beams. (a) The sphere is centred on a
constructive interference fringe maximum. (b) As for (a), but now the soft sphere is centred on an interference minimum. The force on it is
zero by symmetry, as it is in (a). (c) The spherical square well is now centred halfway between an interference maximum and an interference
minimum of the unperturbed counter-propagating beams. This is the position of maximum force. According to figure 6(a) the force is to the
left (the effective area A is negative at ka = 3).

We expect some correspondence between plots of |ψ |2 in
the quantum case, and of |E |2 in the electromagnetic case, for
the same value of ka, since both are built up from solutions of
the same Helmholtz equation. The sphere diameters used in
the experiment range from 0.3 to 1.0 µm. The wavelength of
the evanescent waves in the water, when incidence is close
to critical, is 0.8 µm. Thus ka ranges from 1.2 to 3.9,
approximately. We shall use ka = 3 (wavelength = (π/3)
diameter) as a representative value, with ka large enough to
display the diffraction hot-spots in the near field.

Figure 4 shows |ψ |2 for the near field around a square well
with depth 0.44 times the energy (to correspond to a relative
refractive index nr of 1.2), in a unidirectional beam, incident
from the left. Note that the intensity maximum (‘hot-spot’)
cannot be explained by geometric optics, which predicts a
focus (for paraxial rays) at

zm = a
nr

2(nr − 1)
. (62)

When the relative refractive index nr is 1.2, the distance zm

from the sphere centre is 3a according to (62), and ray optics

predicts a hot-spot at kzm = 9 in figure 4, whereas it occurs at
kzm ≈ 2.68, inside the sphere. The value of |ψ |2 at maximum
is 4.37 times the value of |ψ |2 far from the sphere, at ka = 3.
(For ka = 4 we find a maximum intensity at kzm ≈ 3.77, 6.68
times the ambient value.)

Figures 5 show the near field around the same sphere
(ka = 3), now in counter-propagating beams. The
constructive interference fringes are centred respectively on
the sphere, symmetrically on either side of the sphere, and
halfway between these zero-force configurations. The net
force on the sphere at any position relative to the fringes is
given by (20) and (21), with the phase shifts δ� appropriate
to scattering by an attractive square well, namely (see for
example [5] (equations (19.15) and (19.26)))

tan δ� = γ� j�(ka)− j ′
�(ka)

γ�n�(ka)− n′
�(ka)

, γ� = q

k

j ′
�(qa)

j�(qa)
. (63)

In (63) a prime indicates a derivative with respect to the
argument, and q is the wavenumber inside the well, q = nrk
(nr = 1.2 in the figure). Figure 6(a) shows A/πa2, where A
is the effective area in the force expression (20).
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(a)

(b)

Figure 6. (a) A/πa2 for an attractive square well, V0/e = 0.44
(refractive index 1.20 relative to the ambient medium), versus ka.
(b) A/πa2 for a dielectric sphere of relative refractive index 1.20.

In figure 6(b) we show A/πa2 for the dielectric sphere,
for which A is given by (56) and the force is given by (55).
The curves for the quantum and electromagnetic cases are
qualitatively similar in the location of their leading zeros; the
first three occur at ka ≈ 2.38 and 2.87, 3.52 and 4.16, 4.60
and 5.33, respectively. However, it is clear that one cannot
rely on the scalar theory for quantitative prediction of the
electromagnetic force.

Finally, figures 7 and 8 give the distribution of the
magnitude of the electric energy density, proportional to |E |2,
for a dielectric sphere (ka = 3, nr = 1.2), respectively in
a unidirectional beam, and centred on a fringe maximum, a
fringe minimum, and at the position of maximum force. The
incident plane electromagnetic waves are polarized in the x
direction. There is accordingly an azimuthal dependence in
the electric and magnetic fields, but the variation of |E |2 with
azimuthal angle φ is not strong: in figure 7 we show two plots,
one at φ = 0 in the y = 0 plane and one at φ = π/2 in the
x = 0 plane. The figures relating to fringes are all drawn for
the y = 0 plane, i.e. in the plane of polarization.

9. Radiation force on a dielectric sphere in a liquid

Our result (55) for the force on a dielectric sphere applies to
a sphere in vacuum. Its physical basis is Newton’s law: force
equals the rate of change of momentum. We calculated the
rate at which the electromagnetic momentum is being changed
by scattering off the sphere, assuming that the momentum of a
quantum of energy e is e/c, or equivalently that the momentum
density of the field is the energy flux density (Poynting vector)
divided by c2. (It has been shown that localized wavepackets
obeying Maxwell’s equations always have momentum smaller
than energy/c [16], but here we have plane waves incident,
and we use the asymptotic forms of the scattered waves—that
is, highly delocalized states.)

How should our force equations be modified to apply to
the experimental case, where the dielectric spheres are in a

liquid? One aspect is clear: in calculating the electromagnetic
scattering coefficients a� and b�, we should use (and have
already used, in our example of section 8) the relative refractive
index nr = ns/na, where ns and na are the refractive indices of
the dielectric sphere and of the ambient medium (water, in the
Mellor–Bain experiment). When ns = na the sphere becomes
optically invisible, and there is no scattering and no force; the
coefficients a� and b� all go to zero when nr → 1, linearly in
nr − 1.

But what should one put for the momentum of the light in
the liquid? There are two main contenders for the momentum
associated with a packet of energy e in a medium of refractive
index na,

pA = 1

na

e

c
, pM = na

e

c
(64)

associated with Abraham and Minkowski, respectively. The
Abraham–Minkowski controversy is nearly a century old,
and still active [17–22]. The experiments of Jones and
Richards [17] established that the force on a mirror submerged
in various liquids is proportional to the refractive index of the
liquid (other factors being equal) to ±1.2%. Later experiments
of Jones and Leslie [18] confirmed that ‘electromagnetic
momentum is proportional to the refractive index, to ±0.05%’.
Gordon [19] has noted that ‘radiation’ pressure is actually a
combination of the force exerted directly by the field within the
object and that exerted on the object by mechanical pressures
induced in the ambient medium by the field. A review of the
experimental situation to 1979 is given by Brevik [20]. The
effective momenta of photons in dielectrics are considered by
Loudon [21], who finds the ‘force enhanced by the refractive
index of the transparent medium’. We adopt the view that [22]
‘while Abraham’s expression is indeed the momentum of
the field, the measured momentum also includes the matter
contribution, and its value coincides with Minkowski’s result’.
The implication for the problem at hand is that (55) becomes

force = na(AS0/c) sin 2kb (65)

where the effective area A of (56) is to contain coefficients a�
and b� calculated with the relative refractive index nr = ns/na,
with wavenumber k equal to na times the vacuum wavenumber.

10. Discussion

We have considered the forces on spheres in counter-
propagating coherent beams. In both the quantum particle
and electromagnetic cases we found a simple form for the
force, proportional to sin 2kb. (This is simpler than the
form

∑∞
m=1 Am sin 2mkb demanded by the periodicity of the

interference fringes.) The force is determined by the same
phase shifts δ� and vector wave coefficients a� and b� which
arise in computing the scattering cross-sections.

An interesting aspect of the results is that the multiplier A
of sin 2kb is an oscillatory function of ka, so there exist sphere
sizes (relative to the wavelength of the radiation) for which the
force on the sphere is zero, whatever its position within the
fringing field.

If the sphere radius and the refractive indices of the sphere
and ambient medium are known, no adjustable parameters
remain in the force expression. Thus the radiation forces can
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(a) (b)

Figure 7. Contours of |E|2 for a dielectric sphere in a unidirectional beam polarized along the x direction. In (a) we show the electric energy
density in the plane y = 0 (sin φ = 0). Part (b) is for the x = 0 plane (cosφ = 0); in this plane the radial component of E is zero, and |E|2
is continuous at the sphere surface.

(a) (b)

(c)

Figure 8. (a) Contours of |E|2 for the dielectric sphere of figure 7, centred on the position of an interference maximum of the unperturbed
counter-propagating beams. The plot is in the plane of polarization of the incident beams. (b) As for (a), with the sphere centred on an
interference minimum. Note that |E|2 is in general not continuous at the sphere surface, since only the tangential components of E are
continuous at the surface. (c) The same dielectric sphere, at a position of maximum force. From figure 6(b) we see that A is negative at
ka = 3, so the force is to the left (the equilibrium position for this ka value is at interference minima).

be calculated exactly, and can then be used as a gauge for other
forces that act on the dielectric spheres. However, the results of
this paper are, in the case of evanescent waves, restricted to the

immediate neighbourhood of the critical angle, since we have
assumed the counter-propagating beams to be homogeneous
plane waves.
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A further complication arises when highly focused beams
are used. In this case the fringes will be of finite (and varying)
width, narrowest in the focal region. The theory of optical
tweezers for unidirectional focused beams is available [23],
and can in principle be generalized to counter-propagating
beams by using the methods developed here.
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Appendix. Scattering by a dielectric sphere

We summarize the standard results [7–14] to provide
definitions of the fields and scattering coefficients. The
notation parallels that of van de Hulst [12]. Details of proofs
are omitted.

If ψ satisfies the Helmholtz equation (∇2 + q2)ψ = 0,
so do the vectors M = ∇ × rψ , N = q−1∇ × M. Also
qM = ∇ × N. Let q = nk = nω/c, n being the refractive
index. The Maxwell equations for harmonic waves with e−iωt

time dependence, ∇ × E = ikB and ∇ × B = −ikn2E, are
satisfied by

E = Mv + iNu, B = n(Mu − iNv) (A.1)

when u and v satisfy (∇2 + q2)ψ = 0, and Mu = ∇ × ru, etc.
For a linearly polarized incident plane wave eikz (the time

factor e−iωt is omitted here and below), with E0 = x̂eikz ,
B0 = ŷeikz , the field components along r̂, θ̂, and ϕ̂ are

E0
r = sin θ cosφeikz B0

r = sin θ sinφeikz

E0
θ = cos θ cosφeikz B0

θ = cos θ sinφeikz

E0
φ = − sin φeikz B0

φ = cos φeikz .

(A.2)

The components of M = ∇ × rψ and qN = ∇ × M,
based on a solution of (∇2 + q2)ψ = 0, are

Mr = 0 q Nr = (∂2
r + q2)(rψ)

Mθ = 1

r sin θ
∂φ(rψ) q Nθ = 1

r
∂r∂θ (rψ)

Mφ = −1

r
∂θ (rψ) q Nφ = 1

r sin θ
∂r∂φ(rψ).

(A.3)

The incident field components (A.2) are given by (A.1) with
n = 1(q = k) and

u0 = − sin θ cos φ
∞∑
�=1

2� + 1

�(� + 1)
i� j�(kr)π�(cos θ)

v0 = sin θ sin φ
∞∑
�=1

2� + 1

�(� + 1)
i� j�(kr)π�(cos θ)

(A.4)

(some properties of π�(C) = dP�(C)/dC were given in
section 5). The corresponding functions for the scattered wave

are spherically diverging waves at large kr . We write them as

us = − sin θ cosφ
∞∑
�=1

a�
2� + 1

�(� + 1)
i�ih(1)� (kr)π�(cos θ)

vs = sin θ sin φ
∞∑
�=1

b�
2� + 1

�(� + 1)
i�ih(1)� (kr)π�(cos θ).

(A.5)
The solutions in the interior of the sphere are

ui = − sin θ cos φ
∞∑
�=1

c�
2� + 1

�(� + 1)
i� j�(qr)π�(cos θ)

vi = sin θ sin φ
∞∑
�=1

d�
2� + 1

�(� + 1)
i� j�(qr)π�(cos θ).

(A.6)

The continuity of the tangential components of E and B at
r = a implies the continuity of rv, nru, ∂r(rv) and n−1∂r(ru).
Since derivatives of ru and rv are involved, it is convenient to
work with the functions

S�(kr) = kr j�(kr), C�(kr) = −krn�(kr),

Z� = C� + iS�.
(A.7)

Continuity of nru and n−1∂r(ru) gives, with x = ka, y = qa,

S�(x) + a�Z�(x) = nc�S�(y)

k(S ′
�(x) + a�Z ′

�(x)) = n−1qc�S
′
�(y).

(A.8)

Continuity of rv and ∂r(rv) gives

S�(x) + b�Z�(x) = d�S�(y)

k(S ′
�(x) + b�Z ′

�(x)) = qd�S ′
�(y).

(A.9)

This set of equations is solved by (note that Z�(x)S ′
�(x) −

S�(x)Z ′
�(x) = C�(x)S ′

�(x)− S�(x)C ′
�(x) = 1)

a� = − S�(x)S ′
�(y)− nS ′

�(x)S�(y)

Z�(x)S ′
�(y)− nZ ′

�(x)S�(y)
,

b� = − S ′
�(x)S�(y)− nS�(x)S ′

�(y)

Z ′
�(x)S�(y)− nZ�(x)S ′

�(y)

c� = −1

Z�(x)S ′
�(y)− nZ ′

�(x)S�(y)
,

d� = −1

Z ′
�(x)S�(y)− nZ�(x)S ′

�(y)
.

(A.10)

When the refractive index is real (no absorption) the scattering
coefficients a� and b� can be written in terms of real phase
shifts α� and β�:

a� = eiα� sin α�, where

tan α� = − S(x)S ′(y)− nS ′(x)S(y)
C(x)S ′(y)− nC ′(x)S(y)

(A.11)

b� = eiβ� sin β�, where

tan β� = − S ′
�(x)S�(y)− nS�(x)S ′

�(y)

C ′
�(x)S�(y)− nC�(x)S ′

�(y)
. (A.12)

An alternative way of writing (A.11) and (A.12) is

a� = tan α�
1 − i tan α�

, b� = tan β�
1 − i tan β�

. (A.13)
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As ka increases the coefficients a� and b� move anticlockwise
around a circle of unit diameter, centred on i/2 in the complex
plane. The coefficients a� and b� defined here are i times
the corresponding van de Hulst coefficients. This makes no
difference in the evaluation of cross-sections, or of any other
physical quantity. The advantage of the present definitions is
that all coefficients are real to lowest order in ka when the
refractive index n is real: all begin as n2 − 1 times a power of
ka times a positive number (see for example (58)).

When kr is large, we see from (27) that

h(1)� (kr) → eikr

ikr
(−i)� (A.14)

so the us and vs of (A.5) take the asymptotic values

us → − sin θ cosφ
eikr

ikr

∞∑
�=1

2� + 1

�(� + 1)
a�π�(cos θ)

vs → sin θ sin φ
eikr

ikr

∞∑
�=1

2� + 1

�(� + 1)
b�π�(cos θ).

(A.15)

The far field values of the transverse components of the
scattered fields, given in (30), follow from (A.3) and (A.15)
with the use of (32).
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