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Abstract
We show that free-space pulse solutions of Maxwell’s equations which are
localized in space and time have energy greater than c times their
momentum. Thus a Lorentz transformation to a zero-momentum frame is
always possible, in contradistinction to Einstein’s light quantum, for which a
zero-momentum frame does not exist. However, free-space pulse solutions
of Maxwell’s equations are not subluminal: their momentum is less than
their energy divided by c due to necessary spreading or convergence.
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In a recent letter [1] the author has shown that certain free-space
exact pulse solutions of Maxwell’s equations have momentum
smaller than their energy divided by c. For such pulses a
Lorentz transformation to a zero-momentum frame is possible.
It was conjectured in that letter that the result holds for all
localized pulses of finite energy. In this paper we show that
the conjecture is correct. This shows that there can be no
semiclassical correspondence between electromagnetic pulses
and the Einstein light quantum [2], for which energy equals c
times momentum, in all inertial frames of reference.

The results of [1] were all based on a certain set of solutions
of the wave equation [3]. There exist broader classes of exact
solutions [4–9]. Here we shall give proofs for three types of
pulses which are valid for any such solutions, and then give a
general proof valid for any free-space pulse of finite energy.

The results of this paper are restricted to free-space
propagation of electromagnetic pulses. In two-conductor
transmission lines (with vacuum as dielectric), dispersionless
propagation of TEM pulses is possible, and these pulses have
energy equal to momentum times c, provided resistive losses in
the conductors can be neglected (see, for example, section 8.2
and problems 8.1 and 8.2 of [10]). The purely transverse and
dispersion-free nature of these pulses is related to the one-
dimensional propagation of energy and momentum, which is
exclusively along the transmission line.

We begin with the TE + iTM pulse, discussed in detail
in [1]. This has vector potential A = ∇ × [0, 0, ψ], and
zero scalar potential. The electromagnetic fields are B =
∇ × A + i∂tA (∂t stands for ∂/∂(ct)) and E = iB. For such
solutions the energy and momentum densities (in Gaussian

units) are [1]

u = 1

8π
|E|2 = 1

8π
|B|2, p = i

8πc
E×E∗ = i

8πc
B×B∗.

(1)
(Actual physical solutions are the real or imaginary parts of
E and B: when E = Er + iEi = i(Br + iBi) we have
E2

r + B2
r = E2

r + E2
i = |E|2 = |B|2 = E2

i + B2
i and

Er × Br = i
2E × E∗ = i

2B × B∗ = Ei × Bi.) In [1]
the energy density and momentum density are given for the
case where ψ is independent of the azimuthal angle φ:

u = 1

8π
{|∂ρ∂zψ |2 + |∂ρ∂tψ |2 + |∂2

zψ − ∂2
t ψ |2} (2)

pz = − 1

4πc
Re{(∂ρ∂tψ

∗)(∂ρ∂zψ)}. (3)

The x and y components of the momentum density integrate
to zero, so the total momentum is [0, 0, Pz ]. We see from (2)
and (3) that

8π(u − cpz) = |∂ρ(∂z + ∂t)ψ |2 + |(∂z − ∂t )(∂z + ∂t )ψ |2 � 0.
(4)

For general ψ , ∂ρ is to be replaced by ∂x + i∂y . There are
two ways in which the total energy U = ∫

d3ru can equal c
times the non-zero component of the total momentum, Pz =∫

d3r pz : either (∂z + ∂t)ψ = 0 everywhere and at all times, or
{(∂x + i∂y)ψ = 0 and (∂z − ∂t)ψ = 0} everywhere and at all
times. The first condition is satisfied by ψ = f (x, y, z − ct).
For such a functional form the wave equation implies

∂2 f

∂x2
+
∂2 f

∂y2
= 0. (5)
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That is, f is harmonic in x and y, and thus cannot be localized
in the transverse directions. The other alternative leads to the
formψ = f (x +iy, z+ct), again not localized in the transverse
directions, because f satisfies (5). Thus U is greater than cPz

for three-dimensionally localized TE + iTM pulses based on
any solution of the wave equation.

The positive angular momentum pulse considered in [1]
also has energy and momentum given by (1): it has A =
∇ × [iψ,ψ, 0], B = ∇ × A + i∂tA, and E = iB. For pulses
of this type we find, after using the fact that ψ must obey the
wave equation,

8π(u − cpz) = |(∂z + ∂t)
2ψ|2 + |(∂x − i∂y)(∂z + ∂t)ψ |2 � 0.

(6)
We obtain equality of u with cpz when (∂z + ∂t)ψ = 0. This
condition requires ψ to have the functional form f (x, y, z −
ct). Since ∇2ψ = ∂2

t ψ , this f satisfies (5), and so cannot be
localized transversely.

As a final example from [1], we take A = ∇ × [ψ, 0, 0],
B = ∇ ×A, E = −∂tA and realψ . Feng et al [11] evaluated
the energy (but not the momentum) of this pulse when ψ is
taken as the real or imaginary part of the complex Ziolkowski
solution of the wave equation [3], namely

ψZ = {ρ2 + [a − i(z + ct)][b + i(z − ct)]}−1. (7)

Here we find (for any real ψ)

8π(u − cpz) = [(∂2
y + ∂2

z + ∂z∂t )ψ]2

+ (∂x∂yψ)
2 + (∂x∂zψ)

2 + (∂y∂tψ)
2 � 0. (8)

Equality of u and cpz is possible only for ψ independent of x
and y, and satisfying (∂z + ∂t)ψ = 0, i.e. of the plane wave
form g(z − ct).

The above examples demonstrate the truth of the
conjecture (that energy is always greater than c times
momentum for pulses localized in three dimensions) for three
classes of pulse. To obtain a general proof we shall consider
the energy and momentum densities in terms of the field
components, instead of in terms of a solution of the wave
equation, as was done above. The densities are u = (E2 +
B2)/8π and p = E × B/4πc, with real fields E(r, t) and
B(r, t). If the z-axis is taken along the direction of the total
momentum vector P (which of course is a constant [1]), we
have

8π(u − cpz) = E2 + B2 − 2(E × B)z

= E2
x + E2

y + E2
z + B2

x + B2
y + B2

z − 2(Ex By − Ey Bx )

= (Ex − By)
2 + (Ey + Bx )

2 + E2
z + B2

z � 0. (9)

Thus U = cPz requires Ez = 0 = Bz (i.e. purely trans-
verse fields, everywhere) and also {Ex = By, Ey = −Bx},
everywhere. Maxwell’s equations then imply that (∂z +
∂t )Ex = 0 and (∂z + ∂t )Ey = 0, i.e. both must be of the form
f (x, y, z−ct), and thus also that equation (5) is to hold for both
Ex and Ey. Therefore neither of the two independent trans-
verse components Ex and Ey can be localized transversely,
since both are harmonic in x and y.

We have thus shown that free-space electromagnetic
pulses which (at a given time) are localized in three-dimensions
necessarily have energy greater than c times their momentum.
Since P and U/c form a four-vector, a Lorentz boost at speed
c2 Pz/U will transform a given pulse to its zero-momentum
frame, in contrast to the Einstein light quanta, for which a
zero-momentum frame does not exist.

The theorem just proved does not imply subluminal
propagation: the propagation is at speed c, but the necessary
spreading (or convergence) of the localized pulse makes the
net momentum less than the energy divided by c.
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