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Abstract

Coulomb energies of ferroelectric and antiferroelectric ordering of protons in ice Ih and Ic are compared for unit cells
containing eight water molecules. The lowest energy is obtained for antiferroelectric ordering in both the hexagonal and
cubic structures, with the hexagonal energy per molecule being lower by about 2]10~4q2/R, where q is the net change on
the hydrogens and R is the oxygen—oxygen nearest-neighbour distance. The hexagonal ice energy is thus lower by about
0.3meV per molecule, in the comparison of the lowest states. However, many of the possible configurations in the
hexagonal eight-molecule cell have energies higher than the lowest energy of cubic ice. For both hexagonal and cubic
structures, energy favours antiferroelectric hydrogen ordering, while entropy favours the weakly ferroelectric arrange-
ments. An appendix considers Coulomb energies in cubic and hexagonal diamond, and shows that the electrostatic
energy is lower in the naturally occurring cubic form. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The author has previously explored the electros-
tatics of proton arrangements in cubic ice Ic [1]: in
a unit cell of eight water molecules there are 90
possible configurations of the hydrogen nuclei, but
degeneracy of the Coulomb energy reduces these to
four different classes, of which the antiferroelectric
structure has the lowest energy, and the fully fer-
roelectric structure has the highest energy. Here we
consider the energies of ferroelectric and antifer-
roelectric arrangements in hexagonal ice Ih, and
compare the results with those for cubic ice Ic.

*Tel.: #64 4 4715347; fax: #64 4 4955237; e-mail:
john.lekner@vuw.ac.nz.

Both Ih and Ic are tetrahedrally hydrogen
bonded, with very similar (if not identical) bond
lengths and densities [2,3]. The proton disorder
postulated by Pauling [4] is in agreement with the
measured residual entropy [2,3]. However, there
are energy differences (in the meV range) between
the various proton arrangements in cubic ice Ic [1],
and ice Ih doped with KOH undergoes a transition
to an ordered phase at 72K [5—8]. Here we calcu-
late the Coulomb energies of ferroelectric and anti-
ferroelectric configurations in ice Ih, on the as-
sumptions that (i) each proton is at the same frac-
tion f of the oxygen—oxygen distance R from the
nearest oxygen, and (ii) that the net charge on each
hydrogen is q and on each oxygen !2q, in all
configurations satisfying the ice rules [9]. The elec-
trostatic energies are expressed as q2/R times
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a function of f. The range of values of f is 0.31 to
0.37 [10,11], while an even larger range of q values,
namely 0.41DeD to 0.865DeD, has been used in com-
puter simulations of water and ice [12,13]. The
qualitative conclusions in Ref. [1] and this paper
about relative energies of various configurations
are unaffected by changes in the choice of f or q,
although the numerical magnitudes of the energies
are affected.

2. The geometry of three unit cells

The calculations were done for two 8-molecule
unit cells both related to the Kamb cell [14], illus-
trated in Fig. 1. The Kamb (k) cell contains 16
water molecules. The other two cells contain eight
water molecules. One (h) is half of the Kamb cell,
the other (j) is related to the h cell by interchange of
the x and y coordinates (or a translation in the xy
plane and a 60° rotation about the z-axis). There
are more proton configurations possible in a super-
lattice composed of k cells than in superlattices
made up of h or j cells, but for the antiferroelectric
and fully ferroelectric arrangements the three cells

Fig. 1. The Kamb cell for hexagonal ice Ih, with 16 water
molecules. One-half of this (the h cell) has eight oxygens and 16
hydrogens. The protons in the h cell are numbered; the config-
uration shown is [6 2 3 6] in the scheme defined in Section 4. The
cell dipole value is q(1!2f )(!a, 0, 0); the energy is the same as
that of the configuration [1 4 4 2] listed in the table of Section 5
and shown in Fig. 2.

give identical energies. Some computations were
made for the k cell also: the point of using all
three cells is to provide a check on the calculations.
The cells are all orthorhombic (rectangular boxes)
with dimensions a, b, c given in terms of the oxy-
gen—oxygen nearest-neighbour distance R as
follows:

a/R b/R c/R b/a c/a abc/R3

h: J8/3 J8 8/3 J3 J8/3 64/3J3

j: J8 J8/3 8/3 1/J3 J8/3 64/3J3

k: 2J8/3 J8 8/3 J3/2 J2/3 128/3J3

(1)

In each case we choose the origin on an oxygen in
the lower corner of the cell. The x, y, z coordinates
of the oxygen nuclei expressed in units of a, b, c for
the appropriate cell (i.e. m, g, f represents coordi-
nates am, bg, cf), are as follows:
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It is interesting to compare the hexagonal and
cubic lattices of ices Ih and Ic. In each case there are
four nearest oxygen neighbours of a given oxygen,
at distance R, and 12 second neighbours at distance

J8/3R. The differences begin at the third neigh-
bour: the cubic lattice has 12 third neighbours at

J11/3R, while the hexagonal lattice has one third
neighbour at (5/3)R and then nine third neighbours

at J11/3R. The coordination numbers up to the
nearest fourth neighbour (counting bonds) are
given below:
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Neighbour (Distance/R) 9(Distance/R)2 Cubic Hexagonal

1 1 9 4 4
2 J8/3 24 12 12
3h 5/3 25 — 1
3 J11/3 33 12 9
4 4/J3 48 3 3
3h@ 7/3 49 — 6
3@ J57/3 57 12 9 (3)

In both lattices each oxygen site is equivalent to
any other (until the hydrogens are put into place)
but in the hexagonal case the c direction (the optic
axis, also the z-axis in our choice of coordinates) is
special. The third neighbour at closest distance in
the hexagonal lattice is directly above or below (in
the c direction) any given oxygen nucleus. In cubic
ice Ic the oxygens occupy the carbon sites in a dia-
mond lattice, and all oxygen hexagons are in the
“chair” configuration. In hexagonal ice Ih the hexa-
gons formed by the oxygens are “chairs” in the
basal plane (perpendicular to the optic axis), and
“boats” in prism planes (parallel to the optic axis).

3. Oxygen—oxygen Coulomb energies

Each charge in the unit cell interacts with all the
other charges in the cell, and also with the triply
infinite set of images (periodic repetitions) of itself
and of other charges in the unit cell. The author has
developed formulae for the rapid evaluation of these
electrostatics interactions for cubic unit cells [15],
and recently for rhombohedral unit cells [16] fol-
lowing the methods of Sperb [17]. (Extension of the
results of Ref. [15] to rhombohedral cells in quasi-
two-dimensional systems has been given in Ref.
[18].) The Coulomb energy per cell of the interac-
tion of charges q

i
in a cell of dimensions a, b, c is
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The potential function » is given by [16]
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(The prime on the m, n summation means that the
m, n"0 term is to be omitted.)

Although the Coulomb energy per cell is defined
only for neutral systems (+q

i
"0), the energy of an

ice lattice can be notionally split into oxygen—oxy-
gen, oxygen—hydrogen and hydrogen—hydrogen in-
teraction terms:

º"a~1M(2q)2»
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For a unit cell with eight water molecules, for
example, »

OO
is the sum over 28 interactions be-

tween the eight oxygens in the cell, »
OH

is the sum
over 128 interactions between each oxygen and
each hydrogen, and »

HH
is the sum over 120 inter-

actions between the hydrogens.
The split into three interaction types is conve-

nient, but, as we shall see, only the total energy has
meaning, and (for example) the value of »

OO
per

molecule may have different values in different cells.
In the cubic unit cell of ice Ic, containing eight
oxygens, the translational and cubic symmetries
reduce the 28 interactions to two types, and [1]
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where ¸"4R/J3. (Note that the cubic cell has the
same volume as the h and j cells.) The Coulomb
energy of oxygen—oxygen interactions per HOH
unit is [1]
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For the h cell of hexagonal ice Ih, writing
»(m, g, f) for »(a, b, c; m, g, f), where a, b, c are given
in Eq. (1), we find
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The oxygen—oxygen electrostatic interactions,
per HOH unit, evaluate to
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For the j cell of Ih, again omitting a, b and c from
the potential, the oxygen—oxygen interactions re-
duce to
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The electrostatic energy per water molecule is
likewise
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Finally, for the 16-molecule Kamb cell, the 120
oxygen—oxygen interactions fall into 11 classes
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The O—O Coulomb energy per HOH unit is

u,
OO

"

4q2

a
,

»,
OO

/16+26.194596q2/R. (16)

We see that the oxygen—oxygen interaction (per
water molecule) is different in the k cell from what it
is in the h and j cells. Of course, the total energy per
molecule is the same for the same proton arrange-
ments, irrespective of the cell used for the calcu-
lation. To see that the partial terms can be very
different, consider an ionic lattice of the CsCl type.
For a cell with just one plus and one minus ion,
there is only the (#!) interaction within the cell.
For a cell with two plus and two minus ions, there
are (##) and (!!) interactions, as well as two
(#!) interactions. See Section 4 of Ref. [16],
where use is made of the equality of the total energy
per charge pair.

4. Allowed hydrogen configurations,
and their classification

As in the case of cubic ice Ic [1], we wish to
enumerate the proton arrangements in each cell
which are in accord with the “ice rules” [9] (two
protons near each oxygen, one proton on each
O—O bond). Consider the four hydrogens on bonds
emanating from one oxygen, at the vertex of the
figure
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We represent up and down positions by 1 and 0.
Then, as is well known [2—4], six of the 16 arrange-
ments are allowed, namely,

The protons around each oxygen must be in one of
the allowed configurations. (For the inverted bond
structure, namely

the same numberings give the allowed positions.)
Each of the above allowed arrangements can be
interpreted as a binary number, and each of these
has a decimal equivalent:

[1] [2] [3] [4] [5] [6]

0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 1 1 1 0

1 2 4 11 13 14
(17)

This enables us to program a computer search for
the allowed configurations. Fig. 1 shows the num-
bering of the protons in the h (half-Kamb) cell. The
peculiar numbering is chosen so as to make each
row of the array

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(18)

be constrained by the ice rules to be a member of
the set (17). In addition, the following four protons
quartets must be members of (17):

(1, 10, 12, 14) (5, 11, 15, 16) (13, 2, 6, 7) (9, 3, 4, 8).
(19)

Note that there are eight constraints in all, one for
each oxygen atom in the cell, and that these eight
constraints have incorporated the periodic bound-
ary conditions on the ice superlattice made up of
this unit cell.

There are 114 possible proton arrangements in
a superlattice made of h cells (and the same number
in a superlattice made up of j cells, of course). This
is somewhat larger than the 90 hydrogen configura-
tions in the cubic cell made up of the same number
(eight) of HOH units. In the cubic 8-molecule cell
the symmetries reduced the number of energetically
distinct configurations from 90 to 4 (all of the
possible proton arrangements were shown to lead
to the same Coulomb energy »

OH
, so the differences

were within »
HH

). For all the unit cells in hexagonal
ice Ih we again find that the electrostatic oxy-
gen—hydrogen interactions are invariant with re-
spect to the hydrogen arrangements. For the h and
j eight-molecule unit cells, we find that there are 17
different H—H potential functions among the 114
allowed proton configurations, of which
([1 3 2 3], [1 3 3 1]) and ([1 3 1 2], [3 1 2 3]) are de-
generate, leaving 15 distinct energies. As in the case
of cubic ice Ic, the lowest state, namely [1 4 4 1], is
antiferroelectric.

5. Cell dipole moments and H—H energies

In cubic ice Ic we found that there was a simple
linear relation between the energy of a proton con-
figuration and the square of the cell dipole moment.
We will attempt to correlate the energies of hexag-
onal ice Ih in the same way. To this end, we need to
define the dipole moments in terms of the proton
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coordinates. We will choose a definition such that
the dipole moment of the cell is zero when all the
hydrogens are positioned midway between the oxy-
gens ( f"1

2
).

The following applies to the h cell, with oxygen
and proton numberings as in Fig. 1. Of the oxy-
gens, 4, 6 and 8 are internal to the cell, 2, 5 and 7 are
on a face (shared between two cells), 3 is on an edge
(shared between four cells), and 1 is at a corner
(shared between eight cells). The centre of mass of
the oxygens is at (1

2
, 1
2
, 1
2
)#(0, 1

24
, 1
16

), where the en-
tries stand for (x/a, y/b, z/c).

Of the protons, 1 is on an edge, 2, 13 and 14 are
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2
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Let d
i
and u

i
represent the positions of the oxy-

gens below and above proton i. From Eq. (4) of Ref.
[1], the position of proton i is
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where b
i
is 1 when the proton is up and 0 when the

proton is down (on the bond joining the oxygens at
d
i
and u

i
). In view of the fact that protons 1, 2, 13

and 14 are shared with other cells, the vectors
u
i

and d
i

should be modified as follows for the
computation of dipole moments:
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With these modifications, and subtraction of the
f"1

2
dipole moment (20), the net cell moment rela-

tive to the f"1
2

value is

D"(1!2f )M+b
i
( u

i
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i
)!(0, 0, 3

2
)N, (23)

again in units of q(a, b, c). For example, for the
lowest energy antiferroelectric configuration
[1 4 4 1], the binary numbers b

i
are given in the

array

0 0 0 1

1 0 1 1

1 0 1 1

0 0 0 1

(24)

so b
4
, b

5
, b

7
, b

8
, b

9
, b

11
, b

12
, b

16
are unity, the others

being zero. The result obtained from Eq. (23) is
then D[1 4 4 1]"(0, 0, 0). The ferroelectric config-
uration (with only four of 16 protons up),

[1 2 1 1],

0 0 0 1

0 0 1 0

0 0 0 1

0 0 0 1

(25)

has the dipole moment

D[1 2 1 1]"q(1!2f )(0, 0,!c) (26)

which we represent as (0, 0,!1). Finally, the two
ferroelectric configurations of highest energy,
namely,

[1 3 2 3],

0 0 0 1

0 1 0 0

0 0 1 0

0 1 0 0

[1 3 3 1],

0 0 0 1

0 1 0 0

0 1 0 0

0 0 0 1

(27)

have dipoles (1, 1,!1) and (2, 0,!1). Since for the
h cell

a"J8/3R, b"J8R, c"(8/3)R, (28)

these two dipoles have the same square, namely
(160/9)(1!2f )2(qR)2.

The 17 distinct proton configurations, with their
H—H energies calculated at f"0.35, and their
dipole moments, are given in Table 1. The energies
are given relative to the lowest, namely [1 4 4 1],
which has a H—H Coulomb interaction per molecu-
le of 15.207640q2/R (all energy values have been
rounded to the sixth decimal place, and are coeffi-
cients of q2/R).

The first column gives the configuration type, the
second the number of configurations of this type
(these add to 114), the third the dipole, with (a, b, c)
representing dipole q(1!2f ) (aa, bb, cc). The
(dipole)2 value is the coefficient of 1

9
(1!2f )2(qR)2
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Table 1

Type Number Dipole (Dipole)2 Energy

[1 3 2 3] 8 (1 1 1) 160 0.005829
[1 3 3 1] 4 (2 0 1) 160 0.005829
[1 2 2 3] 8 (0 1 1) 136 0.005067
[1 6 2 5] 8 (1 1 0) 96 0.004405
[1 6 2 6] 8 (0 1 0) 72 0.004359
[1 2 3 2] 4 (0 0 1) 64 0.004213
[1 2 1 2] 16 (1 0 1) 88 0.004212
[1 3 1 2] 4 (0 0 1) 64 0.004120
[3 1 2 3] 2 (0 0 1) 64 0.004120
[1 6 3 4] 8 (1 0 0) 24 0.003503
[1 5 6 1] 4 (2 0 0) 96 0.003143
[1 6 1 4] 8 (0 0 0) 0 0.002694
[1 2 1 1] 4 (0 0 1) 64 0.002686
[1 4 6 2] 4 (0 0 0) 0 0.001527
[1 4 4 2] 16 (1 0 0) 24 0.001525
[1 5 4 2] 4 (0 0 0) 0 0.001432
[1 4 4 1] 4 (0 0 0) 0 0

Fig. 2. The 15 different energies of the 114 allowed proton
configurations in the h cell of hexagonal ice Ih (triangles), shown
together with the four different energies of 90 allowed configura-
tions of an eight-molecule cell of cubic ice Ic (squares). The
horizontal coordinate is the coefficient of (1!2f )2(qR)2 in the
square of the dipole moment per cell. The vertical coordinate is
the coefficient of q2/R in E!E

0
evaluated at f"0.35, E

0
being

the energy of the lowest configuration in Ih, namely [1 4 4 1].

in the expression for the square of the dipole
moment. The [1323], [1331] and [1312], [3123]
entries are believed to degenerate (i.e. of identical
energy for all f ); the symmetry underlying these
identities is not yet understood.

Fig. 2 shows the f"0.35 energies versus the co-
efficient of (1!2f)2(qR)2 in the square of the dipole
moment, for 8-molecule cells of cubic ice Ic [1] as
well as for the hexagonal ice Ih under consideration
here. We see that the energy of a configuration is
correlated with the square of the cell dipole mo-
ment, but not perfectly, as was the case in cubic ice
Ic. It seems that in the cubic structure the x, y, z
symmetry allows the Coulomb energy differences
to be represented by the interaction of pure dipoles,
distributed within each cell. The hexagonal case is
more complicated, and so higher moments than
just the dipole must be used to represent cell—cell
interactions. For example, four configuration types
have zero-dipole moment, but their energies are not
the same.

6. Total energies, and comparison of hexagonal
and cubic ices

We first comment on the sensitivity of the compon-
ent energies to f"r/R. The oxygen—oxygen Coulomb
interactions are independent of f, of course; these have
been given in Eqs. (12), (14) and (16).

There is only one oxygen—hydrogen interaction
energy, irrespective of the proton configuration,
just as was the case in cubic ice Ic (see Ref. [1],
especially the appendix). It is interesting that “il-
legal” configurations, which have (correctly) one
hydrogen on each O—O bond but have fewer or
more than the correct number of two hydrogens
next to each oxygen, also have the same O—H
Coulomb energy, namely,
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The above expression is for the h cell, with
»(m, g, f) short for »(a, b, c; m, g, f). The 128 interac-
tions are of 24 types. The variation of »)

OH
with f is

similar to that for cubic ice, shown in Fig. 2 of Ref.
[1]. Two particular values of u)

OH
(the Coulomb

oxygen—hydrogen interaction energy, per molecule)
are

f"0.35 f"0.5

!38.700564q2/R !36.998626q2/R
(30)

The 114 possible proton configurations in
the h or j cells lead to 17 distinct potential func-
tions, with two pairwise degeneracies, as we saw in
the last section. The lowest energy is obtained by
the zero-dipole antiferroelectric configuration
[1 4 4 1], at all values of f. For the h cell this has the

form
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The 120 interactions are of 32 types. The vari-
ation of u

HH
with f is similar to that for cubic ice

(Fig. 2 of Ref. [1]. Two particular values of u)
HH

are

f"0.35 [1 4 4 1] f"0.5 [all configurations]

15.207640q2/R 15.008273q2/R. (32)

At f"0 and 1
2

all the proton configurations are
equivalent; for intermediate f the [1 4 4 1] config-
uration is the lowest in energy. Fig. 3 shows the
differences *u)

HH
"u)

HH
!u)

HH
[1 4 4 1] for four

configurations. To high accuracy, they all fit
a curve of the form

*u"g2(1
2
!f)2(c

0
#c3

1
g#c

2
g2#c

3
g3)q2/R, (33)

where g"f (1!f ).
Thus, the antiferroelectric configuration has the

lowest energy, just as we found for cubic ice [1].
This is in agreement with a recent simulation [13],
but not with theoretical predictions [19,20].

Finally, we compare the hexagonal and cubic
forms of ice I. The differences between the highest
and lowest energies of the possible hydrogen con-
figurations are similar: at f"0.35 these are

hexagonal cubic

0.005829q2/R 0.006088q2/R.
(34)

Fig. 3. Energies of four configurations relative to the lowest
energy configuration [1 4 4 1], as a function of f"r/R (the ratio
of the hydrogen—oxygen closest distance r to the oxygen—oxygen
near neighbour distance R). The vertical coordinate is the coef-
ficient of q2/R in *u.

The total energies per molecule of the configura-
tions of lowest energy in Ih and Ic are (again at
f"0.35)

hexagonal [1 4 4 1] cubic [3 2 2 3]

!10.409148q2/R !10.408909q2/R.
(35)

We see that the Coulomb energy per molecule
is lower in the naturally dominant form of ice,
by about 0.000 239q2/R. For q"0.5DeD
and R"2.75A_ , q2/R+ 1.309 eV, so the energy
advantage of hexagonal over cubic ice is about
0.3meV per molecule. Even the largest charge
on the hydrogens which has been proposed (name-
ly, 0.865DeD [13]), would give an energy difference
smaller than the measured heat release of 8.8 J/g,
or 1.65meV per molecule, when Ic converts to
Ih between !113°C and !63°C (Ref. [3], p. 57).
We conclude that our results are consistent with
Nature’s preference for hexagonal ice over
cubic ice, but note that this conclusion rests
on the assumption of identical chemical bonding
and nearest-neighbour distances in the two lattices,
and has taken no account of entropic consider-
ations. A more robust deduction from our results
is that electrostatics favours the antiferro-
electric arrangements, in both hexagonal and
cubic ices.
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Appendix A. Electrostatics of diamond

Diamond is tetrahedrally bonded, like the low-
pressure ices, and correspondingly both cubic and
hexagonal forms may be expected to exist. In the
case of diamond (and also for silicon and germa-
nium) the preferred lattice is cubic, but hexagonal
diamond has been found in some meteorites, and
has been made in the laboratory [21—24]. Diamond
bonds covalently (by the sharing of electrons). The
carbon nuclei are not completely shielded by their
electrons, which are distributed also along the car-
bon—carbon bonds. There is thus a net charge 2q
centred on each carbon nucleus, and a charge !q
distributed on each bond. There is no reason to
suppose that the electron charge on the bonds is
asymmetric with respect to the point midway be-
tween the neighbour carbon nuclei. Thus, the
simplest model for the electrostatics of diamond is
analogous to the ice model used here, with the
charges !q centred on each bond, i.e. with
f"r/R"1

2
. The electrostatic energies per atom are

then, calculated at f"1
2

by the methods of this
paper and of [1],

hexagonal cubic

!8.906577q2/R !8.906753q2/R.
(36)

The cubic lattice thus has the lower electrostatic
energy, by about 0.000176q2/R per carbon atom.
With R"1.5445A_ [24] and an assumed q value of
one half DeD, q2/R+2.33 eV, and the Coulomb en-
ergy difference is about 0.41 meV per atom, or
40 J/g.

The covalent electrons are spread out along the
bond, not concentrated in the middle, so these
numbers must, of course, be treated as just rough
estimates for the electrostatic energies. In addition,
there is a possible difference between the bonding
energies in the chair and boat configurations of
carbon hexagons. Nevertheless, the numbers do
indicate one reason why cubic diamond is the form
most frequently found.

Fig. 4 shows the difference between the Cou-
lomb energies of the cubic and hexagonal lattices,
with charges of $2q at the lattice points and Gq
at fraction f"r/R along the bonds between lattice
sites. For fO 1

2
the lowest (antiferroelectric) config-

Fig. 4. The difference between the electrostatic energies of cubic
and hexagonal tetrahedrally-bonded lattices. Charges 2q are on
lattice sites, and !q at fraction f along the bonds. For fO 1

2
we

compare the energetically lowest configuration for each lattice.
The ordinate is the coefficient of q2/R in E

#
!E

)
. The curve is

the function g2(a#bg#cg2#dg3#eg4), where g"f (1!f ),
fitted to five of the calculated points shown.

urations are compared, as in Section 6. The ordina-
te times q2/R gives the energy difference per lattice
vertex. Ice at fK 0.35 and diamond at f"1

2
are

indicated. We see that the hexagonal energy is
lower for f)0.409, and then the cubic energy be-
comes lower. Ice and diamond are on opposite
sides of this point of electrostatic energy equality.
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