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Abstract 

Possible proton configurations in cubic ice lc are explored. In a unit cell of eight water molecules there are 90 possible 
arrangements of the protons, but degeneracy of the Coulomb energy reduces these to four different classes, of which 
the antiferroelectric structure has the lowest energy, and the fully ferroelectric structure the highest energy. The energy 
differences per water molecule are in the meV range. There is a one-to-one correspondence between the dipole moment of 
the unit cell and the electrostatic energy. The energy increments from the antiferroelectric configuration are proportional 
to the square of the dipole moment. In the 8-molecule cell there are four dipole types. In a cell with 16 oxygens and 32 
hydrogens there are 15 dipole types. In both, the degeneracies of the weakly ferroelectric states are high. 
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1. Introduction 

Cubic ice Ic and hexagonal ice Ih are both tetrahedrally hydrogen-bonded, with very similar densities 
and other physical  properties [1,2]. In both, the protons are disordered, each hydrogen nucleus being placed 
at about 1 A from the nearer oxygen nucleus along the line joining two neighbouring oxygens. Pauling [3] 
proposed the proton disorder to explain the low-temperature entropy of  ice. The agreement between experiment 
and theoretical entropy calculations based on completely random proton positions is excellent [ 1,2]. However,  
ice Ih doped with KOH has been found to undergo a first-order transition to a ferroelectrically ordered phase 
of  ice, named ice XI, at 72 K [4-6]. A recent neutron diffraction study of  D20 ice Ih doped with KOD [7] 
shows that below the corresponding transition at 76 K the transformed sample is a mixture of  an orthorhombic 
phase and o f  hexagonal untransformed ice. 

In this paper we calculate the Coulomb energies o f  various proton arrangements in a cubic superlattice 
composed of  a periodically repeated cubic unit cell containing 8 oxygens and 16 hydrogens, with the oxygens 
in the diamond lattice structure. The Bernal -Fowler  [8] rules (two protons near each oxygen, one proton on 
each O - O  bond) are obeyed, and it is assumed that each proton is at the same fraction f of  the oxygen-  
oxygen distance R, i.e. the O - H  distances in each HOH unit are f R .  If  it is also assumed that the net charge 
q on each proton and - 2 q  on each oxygen, as well as the chemical bonding of  the structure, are not affected 
by proton rearrangement provided the Berna l -Fowler  rules are obeyed, the energy differences between the 
various proton arrangements will be purely electrostatic. It is these energy differences that we calculate. 
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The intention here is not to try to explain the proton or deuteron ordering in doped hexagonal ices, but 
rather to present a detailed and exact analysis of the most basic model, in the much simpler case of pure 
cubic ice. The model assumptions were made explicit in the previous paragraph. No account is taken of the 
possibility that the hydrogen nuclei may lie slightly off the O-O lines, or that the local dipole arrangement 
may affect the bonding, as is suggested by inelastic neutron scattering spectra in ice Ih [9]. Three main results 
come from the simple model: the oxygen-hydrogen Coulomb energy is independent of hydrogen placement; 
the hydrogen-hydrogen energies are in one-to-one correspondence with the squares of the cell dipole moments; 
and the antiferroelectric (zero dipole) proton arrangement has the lowest energy. 

The Coulomb energies can be expressed at q2/R times a function of f .  While R is quoted in a narrow 
range (2.75-2.76~),  the oxygen-hydrogen distance r = f R  has been determined as low as 0.85 A by X-ray 
diffraction [10], and as high as 1.008A by neutron diffraction [11], giving a spread of f values from 0.31 to 
0.37. An even larger range exists for the charge q on the hydrogen nuclei (with corresponding charge - 2 q  
on each oxygen nucleus): if we take the O-H distance (0.9572A) and HOH angle (104.52 °) together with 
the dipole moment (0.7296a.u.) for the bare water molecule [12], the charge giving this dipole moment is 
q=0.3295]el. (This charge gives quadrupole moment elements about 6% too high for the lone molecule.) 
Coulson and Eisenberg [13] have estimated, however, that the dipole moment in ice is about 40% larger 
than in the isolated molecule. The HOH angle is also slightly larger, being close to the tetrahedral angle 
arccos(-½) = 109.47°; the resulting charge q is 1.4 × 0.34931e I = 0.4891e ], if the lone molecule O-H distance 
is assumed. Values ranging from 0.41 l el to 0.865]e I [14, 15] have been used in computer simulations of water 
and ice. 

Given the wide range in the values of f ,  and the even wider spread in the charge q, we emphasize that 
our calculations depend only on the assumptions listed in the second paragraph above, and that the deduced 
energy differences scale as q2/R. We will accordingly give theoretical expressions for the multiplier of q2/R, 
and plots of this multiplier as a function of f ,  as well as energy differences in electron volts for the mid-range 
of the parameters f and q. 

2. Possible proton arrangements in bulk lc 

Fig. 1 shows a unit cell of cubic ice Ic, containing 8 oxygens. The figure is adapted from Kamb [16]; 
it has been reproduced as Fig. 3.2 of [1]. The 16 protons are arranged on the numbered O-O bonds, at 
distance f R  from the nearer oxygen and (1 - f ) R  from the other. Consider protons 1, 2, 3 and 4. Each of 
these has two positions on its bond, "up" and "down", which we represent by 1 and 0, respectively. Each 
configuration of these four hydrogen nuclei can be coded as a binary number of four digits. Of the 16 proton 
arrangements, the following six are allowed by the Bernal-Fowler rules (or "ice rules"): 

[0] [1] [2] [3] [4] [5] ( 1 ) 

0000 0101 0110 1001  1010 1111 

Similarly protons (5,6,7,8), (9, 10, 11, 12), (13, 14, 15, 16) must be m one of these allowed configura- 
tions. Further, because the unit cell is periodically repeated in all three spatial directions, the proton groups 
(1,6, 11, 16), (2, 5, 12, 15), (3, 8, 9, 14) and (4, 7, 13, 10) must also be chosen from the allowed configurations 
given in (1). It follows that in the 4 x 4 matrix of proton numbers 

1 2 3 4 

5 6 7 8 

9 10 11 12 (2) 

13 14 15 16 



J. Lekner/Physica B 240 (1997) 263~72 265 

I I 

, 

I I 
J I 
I I 
I 

I I 
I t I 

I I 

Fig. 1. One possible proton configuration in an 8-molecule unit cell of ice Ic. The 16 protons within the cell, and two outside it, are 
indicated by black dots. The configuration shown is [3223], one of 12 antiferroelectric arrangements. In total, 90 configurations are 
allowed by the ice rules. 

each row, both diagonals and both broken diagonals (2, 5, 12, 15) and (3,8,9, 14) must be chosen from the 
set (1). There are 90 configurations which obey the constraints imposed by the ice rules. We shall see 
that there is a lot o f  degeneracy, and in fact that the 90 configurations give only four different Coulomb 
energies. 

First we define a shorthand notation for the 16 proton positions in terms of  the numbers [0] to [5] of  the 
allowed arrangements in any given row, as labelled in (1). Thus, [r l, r2, r3, r4] defines the 16 proton positions 
in terms of  the four row numbers r l  to r4; for example: 

0 0 0 0 

0 0 0 0 
[0000]  =- [0101]  = 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 1 0 1 
[0140] ~ [3223] = 

1 0 1 0 

0 0 0 0 

0 0 0 0 

0 1 0 1 

0 0 0 0 

0 1 0 l 

1 0 0 1 

0 1 1 0 

0 1 1 0 

l 0 0 1 

(3) 

Of these four examples, [0000] is fully ferroelectric, with all the protons in the down position, [3223] is 
antiferroelectric, with half the protons up and half down, and the other two states are partially ferroelectrie, 
with four protons up and twelve down. 

It is clear that for any allowed state there will be an allowed inverse, with up and down (1 and 0) 
interchanged: thus [5555] is just [0000] with the diagram turned upside down, etc. We can accordingly deal 
just with the 45 states which have r l  = 0, 1 or 2. 
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3. Dipole and quadrupole moments 

To classify the possible proton arrangements, we calculate the dipole and quadrupole moments of  the unit 
cell, for each arrangement. The dipole and quadrupole moments of  the oxygens are identically zero. 

For the protons we first define position in terms of  the binary digits bi (zero or unity) which specify 
whether proton i is in the up (bi : 1 ) or down (bi : 0 )  state. Let ui and di be the oxygen positions at the 
upper and lower ends of  the bond which contains proton i. For example, u2 (¼, ¼, ¼)L, d2 1 , = = (~, ~, 0)L, where 

L =4R/x/~ is the edge length of  the cubic cell (this is 6.35 A for R = 2.75 A) and the origin of  coordinates 
is at the near bottom corner of  the cell. The position vector of  proton i is then 

r~ = [1 - f -  b~(l - 2f)]di  + I f  + bi(1 - 2f)]ui.  (4) 

The dipole moment for the cell, which is centered at(½, ½, ½)L, is 

D = q [ • r i - ( 8 ,  8, 8)L] 

: q ( l - 2 f ) [ Y ] b i ( u i - d i ) - ( 0 , 0 , 2 ) L ] .  (5) 

The vectors u~ - di are of  four types, according to which column of  the array (2) the proton i is in: 

(1, 1, 1)L/4, (column I ), 

( -  1, - 1, 1)L/4, (column2), 
ui - di = ( -  1, 1, 1 )L/4, (column3), (6) 

( 1, - 1, 1 )L/4, (column4). 

Thus, the dipole moment of  a given configuration has components 

Dx= ¼qL(1- 2 f )  ( ~ -  ~ -  Y-]+ ~,.4 ) 

D~ = ¼qL(1 - 2 f )  ( Z b i  - 83, 

where ~ , q  bi means the sum of  the four bi entries in column 1 of  the array in (2), etc. 
We note that all components of  the dipole moment of  the cell are identically zero when f = ½, that is when 

the protons are half-way along the oxygen-oxygen bond line. We also note that the z (vertical) component 
of the dipole moment is zero for all configurations in which half the protons are up and half are down 
(so that ~ bi = 8), but that only some of  these are antiferroelectric, with all dipole components zero. 

All of the 45 proton configurations with entries r l  =0 ,  1 or 2 fall into four categories of  dipole moment. 
These are listed below, the dipoles being the listed components times qL(1 -2.1"): 

Dipole components Number of  configurations Prototype 

( - 2 , 0 , 0 )  or ( 0 , - 2 , 0 )  or ( 0 , 0 , - 2 )  3 [0000] 

( 0 , ± 1 , + 1 )  or ( ± 1 , 0 , ± 1 )  or ( i l , i l , O )  12 [0101] 

(±1 ,0 ,0 )  or ( 0 , ~ 1 , 0 )  or ( 0 , 0 ,±1 )  24 [0140] 

(0, O, O) 6 [3223] 

(8) 
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The six configurations with zero dipole moment are antiferroelectric, the others are partially or fully ferro- 
electric. 

It happens that the dipole classification has one-to-one correspondence with the energy degeneracy, as we 
shall see in the next section. Nevertheless, we give the quadrupole moment results as well, for completeness: 
we find that all the allowed proton configurations have zero diagonal components of the quadrupole tensor, 
and one non-zero off-diagonal element equal to +3qL2(l - 2 f ) .  No configuration has the quadrupole moment 

1 identically zero; on the other hand when f - - - ~  all configurations become equivalent, and have null quad- 
rupole as well as dipole moments. 

4. Coulomb energies 

We wish to evaluate the electrostatic energy of a superlattice composed of the cubic unit cell of Fig. l, 
for various proton arrangements within the unit cell. There is a large literature dealing with such problems, 
most of it relating to Ewald's method. The author [17] developed a method which is more compact, and also 
is faster in situations where the charges within a cell are well spaced out [18]. We quote the essential results 
here: the potential energy of a pair of charges ql and q2, and of their repetition to infinity in identical cubic 
cells in all three dimensions, is given by 

qlq2 [V(~,q,~) + C], (9) 
L2 L . 

where ~ =(xl  -x2)/L, rl =(Yl -y2)/L, ~=(zt -z2)/L, C =  3.19134... and V involves a sum over modified 
Bessel functions K0: 

V(~,~/,~) = 4  ~ cos(2n{{) } - ~  Ko(2rt{[O 1 + m) 2 ÷ (~ ÷ n)2] 1/2) 
/=1 m,n= oc 

f i  cosh[2n(q ÷ m)] - cos(2n() (10) 
+ 2n~/2 - l o g  limoo -a4 cosh(2nm) 

The total energy per cell of the Coulomb interactions of all the particles within a cell, and of all of their 
periodic repetitions° is given by a sum over all pairs of terms like (9). The cell must be neutral, otherwise 
the total energy would diverge. Neutrality is assumed in the derivation of (9), as it is in the Ewald method: 
see the first and last paragraphs in Section 4 of [17]. 

We note that only relative displacements enter into the Coulomb energy, but that these enter as vectors rather 
than as distances in the Coulomb energy of a pair of isolated charges ql and q2, which is qtq2/r12. Because 
of the translational and cubic symmetries, many potential terms are equal. Although this is not obvious from 
(10), the potential V is invariant with respect to any permutation of {,q and (, and is periodic in all three 
variables, with period 1. It is clear from (10) that V is even in all three variables. 

The total electrostatic energy per cell containing 8 oxygen and 16 hydrogen nuclei is 

( 2 q ) 2  q2 2q2 
U = T ( V o o  + 28C) + ~-(V.H + 120C) - --[-(VoH + 128C) 

q2 
= ~- {4Voo + VHH -- 2VoH -- 24C}, (11) 
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where each of Voo, VHH and VoH is a sum over all pairs of the relevant particles. For example, there are 28 
oxygen-oxygen interactions. With the oxygens at L times 

1 1 l 1 
000, 0 ~ ,  ~0~, ½½0, (12) 

1 1 1  1 3 3  3 1 3  3 3 1  
4 4 4 '  4 4 4 '  4 4 4 '  4 4 4 '  

1 1 1  the displacements reduce, by the symmetries discussed above, to 16 of type ~ ~ ~ and 12 of type O½ ½, so only 
two values of (10) are needed: 

1 1 I Voo = 16V(¼, ~, ~) + 12V(0, 3, ½)" (13) 

The simplest proton arrangement is that of the fully ferroelectric states [0000] and [5555], for which we find 

VOH=16v ( f , f ,¼) +16V( ¼ / '  4 ' 4  f I 4 ' 4  % )  

1 r , f ) + 4 8 V ( ¼  J , , + 4 8 v ( f ' g  4 ' 2  4- '  4 -~- f '  4 -[- f ) '  (14) 

"HHV002=Z4V( 0,3,1 ½)+8V(0,  L2,7)+j 8V(0,-21 _ f2,-21 _ 2 L) 

+16V(L l _ t  I 32V(1,1 t ~ ) + 3 2 V ( 1  J 1 2,3 ~ , ~ ) +  ~i,4 ~,~,~ + ~)' (15) 

It is shown in the appendix that expression (14) gives the oxygen-hydrogen Coulomb interactions for all 
possible proton arrangements; hence, we have omitted the dipole type 002 on VOH. On the other hand, there 
are four different values of VHH, corresponding to the four dipole classifications: 

VH 11 / /002 
H = ' H H  -~- 8 A ,  

VH 01 1/002 H ='HH +12A, (16) 

VH 00 1/002 H = 'HH -~- 16A, 

where the energy difference for hydrogen-hydrogen interactions in the [0101] and [0000] arrangements, per 
HOH unit, is given by q2/L times A, with 

A ( f )  = { V °°' [0101] - V°°2[0000]}/8 

I f V ( I  f l  / I 1 1 1 1 1 v(4,~- 2,½)+ 2,~+~,~+~)- v(o, v(~, = . ~ , ~ ) -  ~, + f ) .  (17) 

Thus, the degeneracy among the Coulomb energies of the possible proton arrangements is such that there 
are only four different energies, and further, the energy differences are all multiples of A, in proportion to 
square of the associated dipole moment. 

i (at which value the protons each lie half-way between their The function A ( f )  is symmetric about f = g  
I two oxygen bonding neighbours). Note that A is zero at f =  0 and f = ~, as expected on physical grounds. 

5. Numerical results and discussion 

The oxygen-oxygen Coulomb energy, per water molecule, is 

4q 2 
uoo = ~ - ( V o o  + 28C)/8.  

L 
(18) 
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Fig. 2. Coulomb energies as a function of f = r / R ( r = O - H  distance, R = O ~ )  distance), in units of q2/R, per molecule. The oxygen 
hydrogen, hydrogen-hydrogen and total curves are labelled. The oxygen-oxygen Coulomb energy (14.992q2/R) is represented by the 
horizontal line. The differences between the various proton configurations are not visible on the HH curve at this scale. 

This evaluates to 34.623q2/L or 14.992q2/R (since L=4R/x/3). The oxygen-hydrogen and hydrogen- 
hydrogen Coulomb energies, per HOH unit, are 

- 2 q  2 
uoH -- - - -~ (VoH + 128C)/8, (19) 

002 q2 r v~OO2 UHH = ~ ~  HH + 120C)/8. (20) 

These vary with the ratio f = r/R which gives the proton positions along the O-O bond lines. Fig. 2 shows 
the coefficients of qZ/R for the O-H and H-H energies, as well as of the total energy. In the range f = 0.31- 
0.37 which is of  physical interest, there is a decrease of about 5% in the Coulomb binding energy. At f = 0.35 
the coefficients of q2/R in uoH and "oo2 uHH are --42.52 and 17.12; the coefficient of q2/R in the total Coulomb 
energy is -10.40. For q = 0.5 ]e] and R = 2.75 A, this gives a binding energy per molecule of -13.62 eV, since 
q2/R is then 1.309 eV. We can compare this with the Coulomb energy of an isolated molecule with the same 
charges and the O-H distance r = 0.35R, and with the angle HOH taken as the tetrahedral angle arccos ( -½) .  
This energy is 

F 
(21) 

which evaluates to -12 .67eV,  giving lattice electrostatic binding of 0.95 eV per molecule. The charge 
q = 0.39]e] would give 0.58 eV per molecule, in agreement with the experimental lattice energy [2, p. 39]. 

Our main interest lies in the energy differences between the various proton arrangements. These are all 
multiples of A(f), which is given in (17) and plotted in Fig. 3. We see that A is never positive; it reaches 
a minimum of A m  ~ - O.O13qZ/L at f ~ 0.22. It follows that (for all possible values of  f )  the antiferroelectric 
states, of  which [3223] is the prototype, have the lowest energy in bulk cubic ice. For f = 0.35 A, takes the 
value -O.O07q2/L ~-O.O03q2/R, which evaluates to -0.004 eV for the q and R values used above. The 
energy difference between the completely ferroelectric proton arrangement and the antiferroelectric state is 
twice this, namely 8 meV per molecule. 

As the unit cell is enlarged, we expect the number of  energetically distinct configurations to increase, with 
new levels appearing but with the antiferroelectric states still having the lowest energy. Doubling the cell size 
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24 (011) .. . . . . . .  ~ . . . . . . . . .  [0101] 
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Fig. 3. Energy level diagram, and the energy difference A between the [0000] configuration (all protons down) and the [0101] configuration 
(four protons up), as a function of f ~ r/R. In the energy level diagram, the first column gives the degeneracy, the second gives the 
dipole moment in units of qL(l 2f) ,  and the third a representative configuration. The energy difference A is shown in units ofq2/R; 
note the scale compared to that in Fig. 2. Since A is negative, the fully ferroelectric proton configurations have the highest energy, and 
the antiferroelectric configurations have the lowest energy. 

by doubling one of its dimensions gives 6426 possible configurations for the 32 protons. These configurations 
are of 15 dipole types, listed below: 

I1 1 33 I 1 1  000 001 gS1 011 51~ 002 012 l~g 112 ~1~ 022 003 ~g3 013 004 

0 2 3 4 7 8 10 ] 1 12 15 16 18 19 20 32 

210 576 720 384 496 268 328 48 48 48 20 32 16 16 3 

The first row denotes the type of dipole components, with entry abc standing for dipole values qL(1 2f)  
times any permutation of (±a,  ±b, i c ) .  The second row entries are proportional to the square of the dipole 
moment; the numbers given are 2(a 2 + b 2 + c 2). The last row gives half of the number of proton configurations 
with the given type of dipole moment; the entries add to 3213. 

We see that there are large numbers of weakly ferroelectric states with small cell dipole moments, relative 
to both the antiferroelectric states and the strongly ferroelectric states with large dipole moment. The zero- 
moment antiferroelectric states are 6.5% of the total; in the 8-molecule cell they were 13.3% of the total. 

It seems likely that Coulomb energies of larger cells will continue to be correlated with cell dipole moment. 
If  so, the trends shown above indicate that while energetics favour the antiferroelectric proton configurations, 
entropy favours those that are weakly ferroelectric. An order-disorder phase transition, if it exists in pure ice, 
would then be from an antiferroelectric low-temperature ordered phase to a disordered weakly ferroelectric 
phase. This is in agreement with a recent simulation [15], but not with earlier theoretical predictions [19, 20], 
which did not sum the Coulomb interactions exactly. 
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Appendix. lnvariance of VOH 

We wish to show that the oxygen-hydrogen Coulomb interactions are unaffected by proton rearrangement, 
provided the protons stay on the oxygen--oxygen lines and move from a position at r = J R  from the nearest 
oxygen to a position at JR  from the other oxygen. 

With reference to Fig. 1, we note that a legal move (one obeying the ice rules) can be made up from 
a chain of  illegal moves. For example, from the fully ferroelectric arrangement, with all protons down, we 
can form another allowed configuration by moving protons 1,4, 13 and 16 up on their bonds. 

Again with reference of  Fig. 1, it is apparent that there are just two different types of  proton position in the 
unit cell: between a comer  oxygen and an inside oxygen, and between a face oxygen and an inside oxygen. 
Protons 1 and 2 are of  these two types, respectively. 

1 I Consider the single illegal move in which proton 1 moves from r/L = (g, g, g) to rl/L = (¼ - g, ~ - g, ~ - g), 
where g = f / 4 .  The eight displacements from proton 1 to the oxygens are all changed, but in such a way 
that there is a one-to-one equivalence between the original set of  eight displacements and the new set. 
(The displacements are calculated from r , r  t and the oxygen coordinates given in (12).) For example 

' g,~ + g )  ( _ g , ~  _ g , ~  _ g ) ~ ( g ,  ! + l ( A I )  

from the fact that potential V(~, q, ~) is invariant with respect to change of  sign of  any of  the variables, and 
is also periodic (with unit period) in all three variables. With reference to (12), we find that the displacement 
between r and an oxygen in the top row is equivalent to displacement between r ~ and the oxygen directly 
below, and vice versa. 

1 I The same result holds for an illegal move made with proton 2, from r / L = ( ~  - g ,  ~ - g , g )  to r i lL=(¼ + 

g, ¼ + g, ¼ -  g). In this case the equivalence is between displacements relative to oxygens designated by 
coordinates in the top row of  (12), and those with coordinates in the bottom row in reversed order. 

Since any legal move is made up from a chain of  illegal moves, it follows that the oxygen-hydrogen 
Coulomb energy is independent o f  the hydrogen placement. This result has been obtained for a unit cell 
containing 8 oxygens and 16 hydrogens, in cubic ice Ic, but we suspect that it is more general. 
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