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Abstract
Analytic expressions are found for the electric field and potential around a
pair of hyperbolic conductors with a potential difference between them. The
results also apply to the field and potential between a hyperbolic conductor
and a conducting plane, and to the two-dimensional flow of an ideal fluid
between hyperbolic barriers or between a flat surface and a hyperbolic barrier.
The field strength at a conductor is found to be proportional to the cube root
of the local curvature. (The planar case must be obtained as a limit.) The
methods and results are simple enough to be used in teaching electrostatics
and hydrodynamics, in particular to supply an explicit counter-example to the
popular misconception that the field strength at a conductor is proportional to
the local value of the curvature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Richard Packard has proposed an experiment in which electrostrictively frozen helium would
serve as an electrostatically variable barrier between two baths of liquid helium [1]. This paper
presents a simple solvable two-dimensional model for the electrostatics and fluid mechanics of
such a barrier. It may be useful in the analysis of the proposed experiment, and also as a worked
example in teaching electrostatics and fluid mechanics, since all the desired characteristics
(field lines, equipotentials, field strength, curvature of equipotential surface) may be obtained
analytically by elementary mathematics.

It is well known that in electrostatics, in magnetostatics and in the flow of fluids with
negligible compressibility and viscosity [2–5], the respective electric, magnetic and velocity
potentials satisfy the Laplace equation. It is also well known (and easily verified) that in the
two-dimensional case, any differentiable function w of the complex variable z = x + iy (or of
z∗ = x − iy) will satisfy(

∂2
x + ∂2

y

)
w(x + iy) = 0. (1)
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The real and imaginary parts u(x, y) and v(x, y) of w(z) = u + iv also satisfy Laplace’s
equation, since by differentiating w with respect to x and y respectively we get

∂xw = w′ = ∂xu + i∂xv ∂yw = iw′ = ∂yu + i∂yv (2)

and hence u and v satisfy the Cauchy–Riemann equations

∂xu = ∂yv ∂xv = −∂yu (3)

from which the fact
(
∂2
x + ∂2

y

)
(u, v) = 0 follows by further differentiation.

Also, the curves along which u is constant are orthogonal to the curves along which v

is constant: constant u implies ∂xu dx + ∂yu dy = 0, so the slope is dy/dx = −∂xu/∂yu.
Likewise the slope of a v = constant curve is −∂xv/∂yv, and the product of these two slopes
is –1 by the Cauchy–Riemann equations, proving that the curves cross at right angles.

If the dimensionless function v(x, y) is proportional to the potential, the dimensionless
function u(x, y) will give the electric field lines (or the magnetic field lines, or the stream
lines of fluid flow). For, the electric lines of force are given by dx/Ex = dy/Ey , and
E is proportional to the gradient of v, so ∂yv dx = ∂xv dy on a line of force, or (by the
Cauchy–Riemann equations) ∂xu dx + ∂yu dy = 0, which defines the curves of constant u.

A complex function w = u + iv representing electric potential and electric field between
two hyperbolic conductors (or the velocity potential and stream function for flow between two
hyperbolic barriers) will be given in the next section.

2. Hyperbolic conductors and barriers

Hyperbolae with asymptotes y = ± b
a
x have the equation

x2

a2
− y2

b2
= 1. (4)

The hyperbolae cross the x-axis at x = ±a. The radius of curvature at these ‘ends’ is
κ−1 = b2/a. The foci of the hyperbolae are at x = ±

√
a2 + b2. Sharp hyperbolae have

a > b, blunt hyperbolae have b > a; the ‘rectangular hyperbola’ has a = b (see for
example [6]).

For our purposes, an important aspect is the parametric expression (see for example
section 4.16 of [2]) for the right-hand branch of the hyperbola:

x = a cosh θ y = b sinh θ. (5)

This is because (i) the functions u(x, y) and v(x, y) defined implicitly by

x + iy = a cosh(u + iv) + ib sinh(u + iv) (6)

both satisfy the Laplace equation (z = a cosh w + ib sinh w defines an analytic function w(z),
with real and imaginary parts u and v). Further (ii) with v chosen as the potential function,
v = 0 gives us x = a cosh u, y = b sinh u, i.e. the right-hand (positive x) branch of the
hyperbola, as u varies from −∞ to +∞.

For general u and v, we obtain x and y by equating real and imaginary parts in (6):

x = C(ac − bs) y = S(as + bc) (7)

where C = cosh u, S = sinh u, c = cos v, s = sin v. We can write (7) as x = a′C, y = b′S.
If there is a value of v such that

a′ = ac − bs → −a b′ = as + bc → b (8)
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Figure 1. Two hyperbolic conductors, both with a = 2b. The equipotentials (dashed curves)
are also hyperbolae; they are drawn for potential increments of �V/8, where �V is the potential
difference between the two conductors. The field lines (full curves) are ellipses, with semiaxes
R cosh u and R sinh u, where R2 = a2 + b2. The field lines are drawn at equal intervals of u.

this value (v0) would correspond to the potential at the left-hand hyperbolic conductor which
is parametrized by x = −a cosh u, y = b sinh u. Equations (8) are solved by

c0 = cos v0 = b2 − a2

b2 + a2
or v0 = 2atn(a/b). (9)

Also x = 0 when tan v = a/b, i.e. when v is half of the above value, so the plane x = 0 is
at a potential midway between that of the two hyperbolic conductors. If the physical complex
potential is U + iV = U0(u + iv), the actual potential difference between the two hyperbolic
conductors is

�V = U0v0 = 2U0 atn(a/b). (10)

Figure 1 shows the equipotentials and field lines for a pair of hyperbolic conductors with
a = 2b.

The second conductor does not have to be the hyperbola parametrized by x = −a cosh u,
y = b sinh u. It could be the plane x = 0 at potential 1

2U0v0 as noted above, or in
general the hyperbola {x = a1 cosh u, y = b1 sinh u} at potential U0v1, where a1 =
a cos v1 − b sin v1, b1 = a sin v1 + b cos v1. This intersects the x-axis at x1 = a1. Since
a1 =

√
a2 + b2 cos(v1 + atn(b/a)), its most negative value gives the left-hand focus,

−
√

a2 + b2. The corresponding v1 is π − atn(b/a) = π/2 + atn(a/b), with b1 = 0,
representing a conducting sheet at potential U0

[
π
2 + atn(a/b)

]
which extends from x =

−
√

a2 + b2 to x = −∞. Some of these possibilities are illustrated in figure 2.
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Figure 2. Four examples of configurations which are included in the results presented in this paper.
The upper two plots have symmetric pairs of hyperbolic conductors, with a = b on the left, a = 3b

on the right. In the lower two plots the right-hand conducting surfaces are unchanged, and are
at zero potential. The lower-left plot has the left conductor at potential (11/8)�V (where �V is
given in (10)), which puts its apex at about −1.387a, and makes its aspect ratio |a′/b′| ≈ 5.027.
The lower-right plot has the left conductor at potential (5/8)�V ; its apex is at about −0.324a, and
its aspect ratio is ≈0.323.

3. Equations for the equipotentials and lines of force

From (7) written as x = a′ cosh u, y = b′ sinh u, it is clear that( x

a′
)2

−
( y

b′
)2

= 1 (11)

which is the equation of a hyperbola. Since

a′ = a cos v − b sin v b′ = a sin v + b cos v (12)

we see that (a′)2 + (b′)2 = a2 + b2, so the various equipotentials (corresponding to
different values of v = V/U0) are all confocal hyperbolae, with foci at x = ±

√
a2 + b2.

To determine the equations of the lines of force, we eliminate the potential function v via
(a′)2 + (b′)2 = a2 + b2: we get from (7) that( x

cosh u

)2
+

( y

sinh u

)2
= a2 + b2. (13)

The field lines are thus ellipses, with semiaxes
√

a2 + b2 cosh u and
√

a2 + b2 sinh u. The
eccentricity is e =

√
1 − (minor axis/major axis)2 = sech u, the foci are at ±ae. The central

field line (at y = 0) corresponds to an ellipse of eccentricity 1, with foci at x = ±a. Far from
the axis the field lines approach circular arcs, since the eccentricity goes to zero exponentially
for large u = U/U0.
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In the case of the flow of a fluid with negligible compressibility and viscosity, the roles
are reversed: the equipotentials become the stream lines, and the lines of force become the
curves of constant velocity potential.

4. The electric field strength

The electric field has components Ex = −∂xV , Ey = −∂yV , where V = U0v. The square of
the field strength is thus

E2 = U 2
0 [(∂xv)2 + (∂yv)2]. (14)

Now w = u + iv has its derivative with respect to z = x + iy equal to ([2], section 4.11)
dw

dz
= du + idv

dx + idy
= ∂xu − i∂yu = ∂yv + i∂xv (15)

since

du + idv = ∂xu dx + ∂yu dy + i(∂xv dx + ∂yv dy)

= (∂xu − i∂yu)(dx + idy) = (∂yv + i∂xv)(dx + idy)

from the Cauchy–Riemann equations. It follows that the electric field strength is given by
U0

∣∣dw
dz

∣∣ (this holds irrespective of whether we choose u or v to represent the potential). In the
flow of an ideal fluid, the magnitude of the velocity is proportional to |dw/dz|.

In our case we have z = a cosh w + ib sinh w, so
dz

dw
= a sinh w + ib cosh w = S(ac − bs) + iC(as + bc) (16)

where again C = cosh u, c = cos v, S = sinh u and s = sin v. Thus∣∣∣∣ dz

dw

∣∣∣∣
2

= (a2 + b2)C2 − (ac − bs)2 = (a2 + b2)C2 − x2/C2 (17)

and the square of the electric field is given by

E2 = U 2
0

(a2 + b2)C2 − x2/C2
. (18)

On the symmetry plane we have u = 0, so C = 1 and

E2(y = 0) = U 2
0

a2 + b2 − x2
. (19)

At the origin this is U 2
0

/
(a2 + b2); at the right-hand hyperbolic conductor (x = a) the on-axis

field is U 2
0

/
b2. The ratio of these (and thus of the electrostrictive pressures) is 1 + a2/b2.

To obtain the square of the field strength explicitly in terms of x and y, we note
from (13) that x2/C2 + y2/S2 = a2 + b2; since S2 = C2 − 1 this gives us a quadratic
for C2, with solutions

C2
± = R2 + r2 ±

√
(R2 + r2)2 − 4R2x2

2R2
R2 = a2 + b2, r2 = x2 + y2. (20)

C+ is the physical root. Hence (18) gives

E2(x, y) = U 2
0

R2C2
+ − x2

/
C2

+

. (21)

On the symmetry plane (y = 0) this reduces to (19). On the x = 0 plane we have
C2

+ = 1 + y2/R2, so

E2(x = 0) = U 2
0

a2 + b2 + y2
. (22)

Figures 3 and 4 show the square of the field strength (or the square of the velocity in the fluid
dynamics case) for pairs of hyperbolic conductors with a = b and with a = 2b.
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Figure 3. Contours of E2, drawn for a pair of rectangular hyperbolae (a = b). The maximum
field strength U0/b occurs at the apex of each conductor. The contours are drawn for 90% of the
maximum value of E2, and then at 10% decrements. The value of E2 at the centre is one-half of
the maximum value U2

0

/
b2.
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Figure 4. As for figure 3, the conductors being hyperbolae with a = 2b. In this case, the square of
the field at the centre is one-fifth of its maximum value U2

0

/
b2 (in general the ratio is b2/(a2 +b2)).

Comparison with figure 3 shows that the sharper conductors produce a more rapid decrease of E2

(and thus of electrostrictive pressure) with distance from each tip.
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5. The electric potential at a given point

The hyperbolae giving the equipotentials are given by (11) and (12). Since (a′)2 + (b′)2 =
a2 + b2 = R2, these equations give a quadratic for (a′)2 = A, namely

A2 − (R2 + r2)A + R2x2 = 0 (23)

with solutions

A± = 1
2

{
R2 + r2 ±

√
(R2 + r2)2 − 4R2x2

}
. (24)

In this case A− is the physical root, as can be seen for example by looking at the y = 0 plane,
where A = (a′)2 = x2. Also,

a′ = a cos v − b sin v = R cos(v + atn(b/a)). (25)

Squaring and equating to A− gives us

v(x, y) = 1

2
acs

(
r2 −

√
(R2 + r2)2 − 4R2x2

R2

)
− atn

(
b

a

)

= acs


[

R2 + r2 −
√

(R2 + r2)2 − 4R2x2

2R2

] 1
2


 − atn

(
b

a

)
. (26)

In the plane y = 0 these expressions reduce to

v(x, 0) = acs(x/R) − atn(b/a) (27)

which is zero at x = a, and π − 2atn(b/a) = 2atn(a/b) at x = −a. In the x = 0 plane, the
potential function v takes the value π/2 − atn(b/a) = atn(a/b).

6. Field strength and the curvature of conductor

There exists a pervasive misconception, discussed in detail in [7], that the strength of the
electric field at a conducting surface is proportional to the local value of the curvature of the
surface, E = |E| ∼ κ . This cannot be true in general, since E2 = (∂xV )2 + (∂yV )2 depends
on derivatives of the potential, which is a solution of Laplace’s equation and of the boundary
conditions. Thus E depends on the placement of other conductors, whereas κ is defined
locally: for a surface y(x),

κ =
d2y

dx2[
1 +

( dy

dx

)2] 3
2

. (28)

Price and Crowley [7] have shown that it is not even generally true that the maxima of E and
κ occur together.

In the problem discussed here, however, the equipotentials all belong to a family of
confocal hyperbolae, and we shall show that (in this case) there is a simple relationship
between the field strength at the conducting surfaces and the local value of the curvature at the
conductor. The relationship is not a linear one: the field strength is proportional to the cube
root of the curvature.

We consider E and κ on the surface of the hyperbolic conductor x2/a2 − y2/b2 = 1.
(The other conductor can be any one of the hyperbolic equipotential surfaces x = a′ cosh u,
y = b′ sinh u given in (7).) From y2 = b2(x2/a2 − 1) we have dy/dx = (x/y)(b2/a2) and
d2y/dx2 = −b4/a2y3, so

|κ| = a/b2

[1 + R2y2/b4]
3
2

R2 = a2 + b2. (29)
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On the x2/a2 − y2/b2 = 1 surface we have C2
+ = 1 + y2/b2, so from (21) the electric field

strength at this conductor is

E = U0/b

[1 + R2y2/b4]
1
2

. (30)

It follows that:

E = U0

( |κ|
ab

) 1
3

. (31)

Thus there does exist a relationship, for the simple geometry being discussed here, between
the field strength and the curvature, but it is not the expected linear one.

These formulae apply to any choice of hyperbolic equipotential surface as the conductor,
with a → a′ and b → b′ where a′ and b′ are defined in (12). For a given conductor at potential
U0v, the value of (|κ|/a′b′)

1
3 U0 gives E. Since the conductor is an equipotential surface, a′ and

b′ are constant on it, and E is proportional to the cube root of the local curvature. However,
in the special case of the x = 0 plane we need the limit of |κ|/a′ as a′ → 0 to provide the
y-dependence; κ itself is zero. In the plane x = 0 we have a′ → 0, b′ → R, which gives
|κ|/a′ → R−2[1 + y2/R2]−

3
2 , so E → U0(R

2 + y2)−
1
2 , in agreement with (22).

7. Discussion

We have given analytic expressions for the electrostatic properties of confocal hyperbolic
conductors. The same mathematics applies to the flow of incompressible nonviscous fluid
between hyperbolic barriers. These two features should be useful in the design and analysis of
the proposed Packard experiment [1], and also in modelling fields in electric force microscopy
(see for example [8]).

The results are simple enough to be used as an example in teaching electrostatics or fluid
mechanics. Particularly interesting is the fact that there exists a power relationship between the
field strength at the surface of a conductor and the local curvature, for this family of conductor
surfaces.
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