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Abstract
One set of the Ziolkowski family of exact solutions of the wave equation is
shown to represent pulses propagating with momentum smaller than
energy/c. This is explicitly demonstrated for special cases by calculating
the total electromagnetic momentum and energy. Since the ratio of
momentum to energy is a constant smaller than c−1, there exists a Lorentz
transformation to a frame in which the total momentum is zero. In the
zero-momentum frame the fields are those of an annular pulse converging
onto or diverging from a focal region.

Keywords: Electromagnetic pulses, photons, Lorentz transformations

It is axiomatic in special relativity that there is no rest frame
for light: the speed of light is the same in every inertial frame.
It is known, however, that electromagnetic energy can travel
at less than the speed of light [1], and here we shall show
that there exists a Lorentz frame L0 in which the total pulse
electromagnetic momentum is zero, for a class of solutions of
the Maxwell equations.

Ziolkowski [2] obtained exact solutions of the wave
equation ∇2ψ = c−2∂2ψ/∂t2 in the form (ρ = √

x2 + y2

is the distance from the propagation axis)

ψ(r, t) =
∫ ∞

0
dk F(k)

× exp{ik(z + ct) − kρ2/[b + i(z − ct)]}
b + i(z − ct)

. (1)

With F(k) = abe−ka one obtains the particularly simple
solution [2–4]

ψ(r, t) = ab

ρ2 + [a − i(z + ct)][b + i(z − ct)]
ψ0 (2)

where ψ0 is the wavefunction value at the space–time origin.
Feng et al [4] have called the electromagnetic fields derived
from (2) ‘focused single-cycle electromagnetic pulses’. We
shall show in the next paragraph that, for an arbitrary
electromagnetic pulse, the total momentum P and total energy
U are both constant in time. We then show that the fields
derived from (2) have cPz < U . Thus a Lorentz transformation

to a zero-momentum frame L0 is possible, and in that frame
the fields represent an annular pulse, converging for t0 < 0,
diverging for t0 > 0. (In the ‘laboratory’ frame the
wavefunction (2) gives fields in which there is net forward
or backward propagation, in general.)

It follows from Maxwell’s equations that the total energy
U = ∫

d3r u(r, t) is independent of time (∂t denotes
differentiation with respect to ct): 4π∂t U = ∫

d3r (E · ∇ ×
B − B · ∇ × E) = − ∫

d3r ∇ · (E × B) (real fields)
from the Maxwell curl equations, and this integral can be
expressed as a surface integral at infinity, which is zero at finite
times. Likewise, again with real fields and P = ∫

d3r p(r, t),
4πc∂tP = − ∫

d3r [E × (∇ × E) + B × (∇ × B)], and
integrations by parts show that this is also zero at finite times.
Thus the total energy and total momentum are constant in time,
as we would expect. If the ratio cPz/U is less than unity, as
we shall demonstrate it is in particular cases below, we can
Lorentz-transform to the zero-momentum frame.

Given solutions of the wave equation, solutions of
Maxwell’s equations can be obtained as E = −∇� −
∂tA, B = ∇ × A, where � and all components of A

satisfy ∇2ψ = ∂2
t ψ , provided the Lorentz condition ∇ · A +

∂t� = 0 holds [5]. For example, we can take � = 0,

A = ∇ × [0, 0, ψ] = [∂y,−∂x , 0]ψ ; this gives a TE field
E = [−∂y∂t , ∂x ∂t , 0]ψ , B = [∂x ∂z, ∂y∂z,−∂2

x − ∂2
y ]ψ .

A TM field is obtained by the duality transformation E → B,
B → −E: E = ∇ × A, B = ∂tA. The combination
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TE + iTM has E = −∂tA + i∇ × A, B = ∇ × A + i∂tA, i.e.
E = iB (TE − iTM gives E = −iB). In the monochromatic
beam case these combinations give steady beams, in which
the electromagnetic energy density u and momentum density
p (=Poynting vector/c2) do not oscillate in time [1, 6]. As
in the steady beam case, the E = ±iB solutions have (taking
either Re(E, B) or Im(E, B) as the physical fields)

u = 1

8π
|E|2 = 1

8π
|B|2,

p = i

8πc
E × E∗ = i

8πc
B × B∗.

(3)

When ψ(r, t) is independent of the azimuthal angle φ, and
A = [∂y,−∂x , 0]ψ , we find

u = 1

8π
{|∂ρ∂zψ |2 + |∂ρ∂tψ |2 + |∂2

z ψ − ∂2
t ψ |2},

pz = − 1

4πc
Re{(∂ρ∂tψ

∗)(∂ρ∂zψ)}
(4)

and px = pρ cos φ− pφ sin φ, py = pρ sin φ+ pφ cos φ, where
the radial and azimuthal components of the momentum density
are given by

pρ = 1

4πc
Re{(∂ρ∂tψ

∗)(∂2
z ψ − ∂2

t ψ)},

pφ = 1

4πc
Im{(∂ρ∂zψ

∗)(∂2
z ψ − ∂2

t ψ)}.
(5)

Figures 1(a) and (b) show contours of u and field plots of pz , pρ

for a = b and a = 2b at ct = 0 and 3b.
Since U and P are independent of time, we can evaluate

them at t = 0. For ψ given by (2) and A = [∂yψ,−∂xψ, 0]
we have from (4) that, for the TE + iTM pulse,

u(r, 0) = (abψ0)
2

π

× r 4 + 2(a2 + b2 − ab)ρ2 + (a2 + b2)z2 + (ab)2

[r 4 + 2abρ2 + (a2 + b2)z2 + (ab)2]3
(6)

cpz(r, 0) = (abψ0)
2

π

(a2 − b2)ρ2

[r 4 + 2abρ2 + (a2 + b2)z2 + (ab)2]3
(7)

where r 2 = ρ2 + z2. The integrations in spherical polar
coordinates (r, θ, φ) are helped by the substitution cos θ =
r2+ab
(a−b)r tan χ (a > b > 0 is assumed). We find

U = π

8

a + b

ab
ψ2

0 , cPz = π

8

a − b

ab
ψ2

0 . (8)

(The transverse components of momentum integrate to zero.)
Thus cPz/U = (a − b)/(a + b) is less than unity: the
net momentum of the electromagnetic field is less than its
energy/c. We can interpret c2 Pz/U as an average energy
velocity [1, 5] βc, β = (a − b)/(a + b). Independently of this
interpretation, the fact that β < 1 implies that we can transform
to the Lorentz frame L0 in which the total momentum is zero.
In this frame we have ρ unchanged, and

z = (z0 + βct0)
/√

1 − β2 ct = (ct0 + βz0)
/√

1 − β2

(9)

and so, replacing (1 + β)/(1 − β) by a/b,

z + ct =
√

a

b
(z0 + ct0), z − ct =

√
b

a
(z0 − ct0). (10)

The wavefunction in (2) thus becomes, in the zero-momentum
frame,

ψ(r0, t0) = abψ0

ρ2 +
[√

ab − i(z0 + ct0)
][√

ab + i(z0 − ct0)
]
(11)

which gives equal weight to the forward and backward
propagations in the scalar wave.

Feng et al [4] have taken vector potential A = ∇ ×
[ψ, 0, 0], and fields E = −∂tA, B = ∇ × A. For this pulse
the calculations are more complicated than for the TE + iTM
pulse above. We find, for both the real and imaginary parts of
ψ ,

U = π

64

(a + b)(3a2 − 2ab + 3b2)

(ab)2
ψ2

0 (12)

cPz = π

64

(a − b)(3a2 + 2ab + 3b2)

(ab)2
ψ2

0 . (13)

(The expression for U is in agreement with equation (3.6)
of [4].) The Lorentz boost to L0 is

β = a − b

a + b

3a2 + 2ab + 3b2

3a2 − 2ab + 3b2
. (14)

The wavefunction in the zero-momentum frame is now

ψ(r0, t0) = abψ0

ρ2 + [a/α − i(z0 + ct0)][bα + i(z0 − ct0)]
(15)

where

α =
√

1 + β

1 − β
=

√
a(3a2 + b2)

b(a2 + 3b2)
. (16)

The angular momentum density is j = r × p [5, 7]
where p is the momentum density; the angular momentum
of a pulse is J = ∫

d3r j. For the TE + iTM and TE classical
electromagnetic pulses described above, all the components
of J are zero. By analogy with a ‘steady’ beam which in the
plane-wave limit is circularly polarized everywhere [8], we
construct the E = iB pulse

A = ∇ × [−iψ,ψ, 0], E = −∂tA + i∇ × A,

B = ∇ × A + i∂tA.
(17)

The energy density and momentum density are again given
by (3). The complex magnetic field is

B = [(∂x + i∂y)∂y + i(∂z − ∂t )∂z,−(∂x + i∂y)∂x − (∂z − ∂t)∂z,

− i(∂x + i∂y)(∂z − ∂t )]ψ (18)

and when ψ is given by (2) we find the energy and
z-components of momentum and angular momentum of the
pulse to be

U = π

8

3a + b

b2
ψ2

0 , cPz = π

8

3a − b

b2
ψ2

0 ,

cJz = −π

4

a

b
ψ2

0 .

(19)
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Figure 1. Both figures show contours of energy density for the TE + iTM pulse with a = b (a) and a = 2b (b). The contours are at 0.8, 0.6,
0.4 and 0.2 of the maximum at the given value of ct . In each case the t = 0 contours are dashed curves, and the ct = 3b contours are solid
curves. The three-dimensional contour surfaces are obtained by rotating the figures about the horizontal (z) axis. In the a = b case the pulse
is diverging (for t > 0) symmetrically from the origin, and the pulse momentum is zero. In the a = 2b case there is a net momentum in the z
direction, and the pulse energy density is asymptotically maximum on a cone of half-angle θm ≈ 46.7◦. The general expression for the
asymptotic angle at which the energy density is maximum is sin2(θm/2) = [5a − 3b − √

25a2 − 46ab + 25b2]/8(a − b). The arrows
indicate the magnitude and direction of the projection of the momentum density onto a plane which includes the z-axis (i.e. the azimuthal
component is not shown). The momentum density is identically zero at t = 0 when a = b. At ct = 3b in the a = 2b case, the magnitude of
the momentum density has been increased by a factor of 22 (relative to the t = 0 values) for better visibility.

The sign of Jz is reversed if one takes the vector potential and
fields to be

A = ∇ × [iψ,ψ, 0],

E = −∂tA + i∇ × A,

B = ∇ × A + i∂tA.

(20)

The results are then as in (19) with a and b interchanged, and

the sign of Jz changed:

U = π

8

a + 3b

a2
ψ2

0 , cPz = π

8

a − 3b

a2
ψ2

0 ,

cJz = π

4

b

a
ψ2

0 .

(21)

In general, since Pz and U have been shown to be
independent of time, their ratio is also independent of time.
Whenever cPz < U , we can transform to a zero-momentum
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frame. We suspect that this is possible for all solutions which
represent pulses converging onto and then diverging from a
focal region (for example, those of Kiselev and Perel [9]).

According to Adlard et al [10], ‘given any classical
solution of the source-free Maxwell’s equations it is possible to
write down a corresponding quantum mechanical one-photon
state’. They use a particular case of the Ziolkowski solutions to
show that ‘single-photon states with arbitrarily high powers of
asymptotic falloff can be explicitly constructed’. The quantum
fields resulting from the Ziolkowski family of solutions may
thus represent (for t > 0) photons diverging from a focal
region. They are rather different from the textbook photon,
which is monochromatic and unidirectional, with U = h̄ω =
cPz [11], and Jz = ±h̄. Although there are no sustained
oscillations in the pulses derived from (2), we can associate an
effective frequency with the pulse as follows: since (cP , U )

is a four-vector, the pulse energy in the zero-momentum frame
L0 is U0 = (U − βcPz)/

√
1 − β2. From (21), for example,

we obtain (with β = (a − 3b)/(a + 3b))

U0 = π

4

b

a

√
3

ab
ψ2

0 . (22)

Thus, for the vector potential and fields in (20),

U = a + 3b

2
√

3ab
U0, cPz = a − 3b

2
√

3ab
U0,

cJz =
√

ab

3
U0.

(23)

If we set Jz = h̄ and U0 = h̄ω0, the resulting angular frequency
in L0 is

ω0 = U0/Jz = c

√
3

ab
. (24)

The effective angular frequency in the laboratory frame is

ω = U/Jz = c
a + 3b

2ab
. (25)

The frequency ratio ω/ω0 is not given by the usual Doppler

expression
√

1+β

1−β
, since that applies only to monochromatic

plane waves.
We have shown that electromagnetic pulses exist which

have cPz < U , and which can therefore be transformed to a
zero-momentum frame. We suspect that this will hold for all
localized pulses of finite energy, since these must converge or
diverge to some extent. If the same is true for photons, the
Einstein picture of light quanta [11] will need modification.
We intend to explore the implications elsewhere.

Stimulating conversations with Damien Martin are gratefully
acknowledged.
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