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AbslmeL Bounds are given Cor the possible values of the following quantities: the 
refleaion amplitudes rs, T ~ ~ ,  rw, and pa; the transmision amplitudes twr, tr, tpo. tp ;  
the Brewster angle given by the zero of rQ,; and the angle between the atrdordinary ray 
and the mraordinary wavevector. nese bounds are for arbitrary orientation of the optic 
axis relative to lhe refleaing surface and for any angle of incidence. Index matching 
enhancer the effects of anisotmpy, prliculariy in the reflection pmpenies. For ample,  
the bunds on the Brewster angle approach O' and 'No as the refractive index of the 
medium of incidena tends U1 the lower of the ordinary and exlraordinary refractive 
indices. A formula h given far the Brewster angle in the case where Ihe optic axis lies 
in the plane of incidence. n e  conditions under which the four transmission amplitudes 
can k zem are alsn discussed. 

1. Introduction 

The purpose of this note is to present limits on the reflection and refraction properties 
of uniaxial crystals. Although bounds on the optical properties of crystals (as a 
function of the crystal orientation, for example) are of practical and theoretical 
importance, there Seems to he no discussion of such in the optical texts (see for 
example [l-31). We will use the analytical results recently obtained for this problem 
141. As in [4], the reflecting surface is in the z-y-plane, and the plane of incidence 
is the z-z-plane, with the z-axis directed normally into the crystal. The medium 
of incidence has refractive index n l ,  the crystal is characterized by ordinary and 
extraordinary refractive indices no and ne, and the angle of incidence is 8. The 
optic axis c has direction cosines a, p and y with the z-, y- and z-axes, with 
a2+p2+y2 = 1, so that c is the unit vector 

In the reflection-refraction problem, the tangential component of the wavevector is 
the same for the incident, reflected and refracted waves, and is written as 

W 
IC = (-) C n I  sin 8. 

The normal components of the wavevector are respectively q,, - q l .  qo and qe for the 
incident, reflected, and refracted ordinary and extraordinary waves. The values of q1 
and q, are given by 
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where q = n :  is the dielectric constant Of the medium of incidence, and eo=.: (no 
and ne are the ordinary and extraordinaty refractive indices). In contrast to qo, qe 
depends on the orientation of the optic axis: 

where E ,  = n:, Ae = ee - e,,, and 

Bounds on qc were established in [4], where it was shown that qz is hounded by qz 
and by 

The qz bound is attained when P = 0 (optic axis in plane of incidence) and 
a g o  = +,IC. The q i  value is attained when p2 = 1 (and a,y = 0). the optic axis 
then being perpendicular to the plane of incidence, and also when a K + y q ,  = 0. As 
noted in [4], when aK + yqe = 0 (wavevector k, (K, 0, qe)  is perpendicular to the 
optic axis) the extraordinary wavevector and ray directions are both that of (y,O, -a), 
and are thus perpendicular to the optic axis (a, 0, y). Also E, is then parallel to the 
optic axis. Since E, is always perpendicular to the optic axis (see equation (7) below), 
the ordinaly and extraordinary electric fields are orthogonal in this configuration. 
The requirements on the direction cosines are a y  < 0, y2ee < (aZ + y2)e1. For 
given a and y satisfying the above conditions, the angle of incidence is given by 
n,sinO = n e { y z / ( a z  + y2)}'/z, which shows that Snell's law is obeyed by the 
extraordinary ray (and wavevector) in this case. 

(4) 

(5) 

qe = [n,{E.E,w 2 2  / c  - ( E ~ - P ~ A E ) K ~ } ' / ~  - ayKAcl/c ,  

E = n: = eo + y2Ae.  7 

(6) 
q: = EeW2/C2 - ti 2 . 

z 
Flgure 1. Reflection f" a -tal bce. The z-axis is the inward normal, the z-z-plane 
is Ihe plane of incidence, and the angle of incidence is 6'. The refraaed wave directions 
are not shown. The Optic axis E is shown by the bmken line. It is specified by direction 
w i n s  m, p and 7: for example 7 is the msine of the angle between c and the zaxis. 

The ordinary and extraordinary electric field vectors are given by 

Eo= N , S - P ~ , , ~ ~ , - Y K , P W  

E,  = N , ( a q ~ - y q e l ~ , P E o w 2 / c 2 , y ( e , w 2 / c 2  - qz)  - aq,K).  (7) 
No and N .  are normalization factors. A convenient normalization is to unit 
magnitude, Le. so that E; and E: are both unity. Note that E,, is always orthogonal 
to the optic axis, and also to the ordinaly wavevector (K,O,q,). 
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2. Bounds on the reflection amplitudes and on the Brewster angle 

We begin with r,, which gives the amplitude reflected into the s polarization when 
the incident wave is s polarized. From equations (34) and (35) of [4] we find that r. 
can be written in the form 

"s = (a(41 - 90) + b(41 - 4e))/(a(Qi -k 90) + b(4l ne)) (8) 

where 

a = (.no - r K ) 1 4 k k e  + qtd)  - yIC(k2 - q t d )  b = P2k:(k? + 4tq.J 

(9) q1 = ql + Ktan (3 = k:/ql k: = t,w2/c2 k: = elw 2 2  / c  . 

When the optic axis Lies in the plane of incidence, r, reduces to 

rs(P = 0) = (n1- 4 d / ( 4 1 +  4,) (10) 

When the optic axis is perpendicular to the plane of incidence, rs reduces to 

rs(P2 = 1) = (41 - n.)/ (s1+ n.). (11) 

The two expressions (10) and (11) are bounds on rs (see figure 2). When E, > E, 

the p = 0 wlue is the upper bound and the P2 = 1 value is the lower bound. Note 
that (10) and (11) are of the form (nl - q 2 ) / ( q 1  + g2),  which is the s polarization 
Fresnel amplitude for reflection at a boundaty between isotropic media of refractive 
indices nl and n2 (see for example (11 section 1.5.2, or [SI section 1-1). That 
bounds on rS are attained in configurations where the optic axis lies parallel and 
perpendicular to the plane of incidence is in accord with physical expectation, given 
that E, is always normal to the optic axis, and the electric vector of the incident s 
wave k normal to the plane of incidence. 

0 

-1  

Flgum L Reflection amplitudes rr and rpp, as functions of the angle of incidence, 
drawn for calcite (no =1.6S8, ne = 1.486) in air. me full wNeS are the bounds of 
equations (IO), (I]), (IS) and (16), with 2, y, z or 12 indicating that the optic axis lies 
along the 2, y or .T axesv or in lhe r-z-plane (the plane of incidence). The pints  are 
calculated from (8) and (12) with randomly chosen a, p ,  7 and 0 (uniformly distributed 
wer their range). 
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Flgum 3. Reflection by calcile in caslor oil (nl = 1.48): the ampliludes rPp and r, are 
plotted versus the angle of incidence. the a ~ e s  from equations (IO), ( I l ) ,  and (IS), 
(16), Ihe points for mndom values of o,B,r and E .  alculated from (8) and (12). 

Next we look at rppr the amplitude reflected into the p polarization when the 
incident wave is p polarued. This is also shown in figure 2. From equation (42) in 
[4] we find that 

- Tpp = IP2k34*  + P A k ?  - 4190) + (41 + q o ) ( a q o  - rma(&?, - 4143 

- Y W k :  - 414.))l / [ P 2 k 3 q ,  + q,,c.e + 4140) + ('I1 + 4 0 ) ( a q o  - Y K )  

x Ia(k .h ,  + 4,43 - r w k :  + 4 , d M  (12) 

At gazing incidence, where q1 - O,rpp -+ 1. From (8) we see that rs - -1 at 
grazing incidence. It is interesting to note that for reflection from arbitrarily stratified 
isotropic media, T -+ 1 and rs - -1 at grazing incidence ([5] section 2-3). For 
reflection from an lsotropic layer on a uniaxial substrate, it is also true that r -+ 1 

PP and rs - -1 at gazing incidence ([6] section 4). ?he cross-reflection amplltudes 
rV and rP go to zero at grazing incidence, for a crystal with or without an isotropic 
overlayer. 

When the optic axis lies in the plane of incidence, the expression (12) reduces to 

4 

TPp(P = 0) = (Q, - QI)/(Q, + 91) (13) 

where 

2 2  2 
Q1 = q l / q ,  Q, = q,/n,n, d, = E,W / c  - K . (14) 

Bounds on rpp may be obtained from geometries which are special cases of 
p = 0. When the optic axis lies along the intersection of the plane of incidence and 
the reflecting plane ( c  11 z), and with Q, = q,,/n,n,, 

p PP (az = 1) = (Q, - QI)/(Q. + QI) .  (15) 

When the optic axis coincides with the surface normal (reflection from a basal plane), 
we find from equation (51) in (41 that, with Q = qe/co = qm/n,n, 

ppp(r2 = 1) = ( Q  - Qi) /Q + 91) (16) 
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where q, is given by equation (49) in 141: 

9.' = q,(wz/c2 - K Z / c , )  = (Eo/Ee)q: .  (17) 

The expressions (13), (15) and (16) are of the form (Qz-Q1)/(Qz+Q1), which is the 
p polarization Fresnel amplitude for reflection at a boundary between isotropic media 
with dielectric constants and e2, with QI = q1/q,Q2 = q z / E J  ([l], section 1.5.2; 
(51 section 1-2). From figure 2 we see that (15) and (16) are bounds for rpp. When 
eo > E, the az = 1 d u e  is the upper bound, and the yz = 1 value is the lower 
bound. 

For a boundary between isotropic transparent media, the Brewster angle is defined 
by rp = 0, which gives tan@, = nz/nl. Let us define the Brewster angle for 
a boundary between an isotropic medium of index nr and a uniaxial crystal with 
indices n,, and ne by rpp = 0. Then the bounds (10) and (11) also provide bounds 
on OB, namely 

tanZ@B(a2 = 1) = [.e(.. - E 1 ) l / [ E 1 ( . O  - 41 
t a n 2 M r 2  = 1) = [ % ( E ,  - E I ) I / [ E l ( G  - 4 1  

(18) 

(19) 

These expressions have been given as equations (62) and (52) in 141, respectively. 
They are special cases of the following formula, obtained from (13): 

tan2B,(P = 0) = (v, - . l + / k l ( E 7  - 4 1 .  (20) 

This equation gives the Brewster angle when the optic axis lies in plane of incidence. 
Note the effect of an index-matching fluid the range of OB expands to (W , !W) when 
E, tends to the smaller of E,, and ce. This is illustrated in figure 3, which shows the 
pp and ss reflection amplitudes for calcite in castor oil. 

Finally we consider the rsp and rp  reflection amplitudes. These give the amount 
reflected into the p polarization when s polarization is incident, and vice versa. At 
normal incidence, from equation (73) in [4], 

The magnitude of the prefactor 2 a p / ( a z  + pz)  is maximized when la1 = IpI, and is 
then unity. The magnitude of the remaining factor is maximized by y = 0 (the optic 
axis then lies in the reflecting plane, as in reflection by a prism face of a hexagonal 
crystal). Thus at normal incidence 

l ~ s p l > l ~ p l  < (n1ln.3- n,l)/[(n* + a n ,  + 7 4 1  (22) 

where the right-hand side is attained when the optic axis is c = (&l/fi,&l/fi,O). 
The same result follows from [6], equation (19). A fair approximation for the general 
incidence bound is suggested by (22): 

ITSPI? ITp15 (411qo - qml)/[(s1 + q J ( 4 1  + 4 m ) l .  (23) 
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The maximum of the right side of (23), as a function of the angle of incidence, m u m  
when qOqm = ql(ql + q. + qm), which may be reduced to the following quartic in 

= ( cql/w)2 = El cosz e: 

(24) 
y 4 + 2(u + v)y3 + 4uvyz - u2v2 = 0 

where U = (e, - e1);/2 and v = (E. - 4 / 2 .  The relevant solution of this quartic is 
y =  ( f i - l ) ( u + v ) / 2 =  ( f i - 1 ) ( ~ ~ + ~ ~ - 2 ~ ~ ) / 4 ,  plus tertnsof even order in 
AE = ee - eo. Thus a maximum occurs at an angle given approximately by 

cos2@ FZ (f i- 1) (~ ,  + E, -2e1)/4e, (25) 

The value of the right-hand side of (23) at this angle, to lowest order in + 
ee - 2q),  is 

l A e l / [ ( h -  1)’(~, + - 2 ~ i ) l .  (26) 

This expression suggests that index-matching enhances the cross-reflection amplitudes, 
as is indeed the case. 

The general form of the s-to-p and p-to-s reflection amplitudes is, from 
equation (47) of [4], 

r v ’ f p  = 2/3(aqo f - / W ( q o -  4e).%k:/14Ql + qo) + b(q1 + se)] (27) 

the upper sign applying to vsp, the lower to rps. A better approximation than (23) to 
the bound on \rvl and lrpl is obtained by calculating vp in the special configuration 
where p2 = 1/2 and ah’ + yqe = 0. The latter oondition, discussed in [4] following 
equation (29), makes E. parallel to c (also the extraordinary wavevector and ray 
direction are the same, and perpendicular to the optic axis). When ali  + yqe = 0 
we have from equation (22) in [4] 

(28) a 2 p  = 2 z 2 -  2 7 Qm 9. - Qm. 

If in addition p2 = $, the values of a2 and y2 are h e d  when the angle of incidence 
is specified: 

a 2  = (cqm/w)~/(2e,) yz = (CK/W)2/(2€,) (29) 

and the p-to-s reflection amplitude becomes 

rm = ~ g n ( a p ) n l w l ( q ,  - q m ) ( w m  + 1 0  
p (41 + qo){2€,qo(qlqm + eIwZ/cZ) + 1C2[ee(2q1 + q m  -40) + € 1 ( q m  - 40)11 

(30) 

This expression provides an approximation to the bounds on vp and vsp. as shown in 
figure 4. 



Refection and refaction by uniaxial c'ysrob 9465 

.P and P. 
.04 

0 

-.04 

F&um 4 ?he reflection amplitudes rP and P ~ ,  for ralcite in air. Ihe poinb 
are for randomly chapcn angles of incidence and optic =is oienlation, the NNeS are 
approximate bounds h m  equations (7.3) and (30) (dashed and full awes, respectively). 

'I 

FIgure 5. Bounds far the transmission amplitudes t a , t m , t p , t p o  as a function of the 
angle of incidence, for calcite in air. The solid C U N ~ E  are bounds on 1, and t,., 
(equations (37) and (38)); the dashed N W ~ S  are approximate bounds on tpo and t p  
(expressions (41) and (45)). 

3. Bounds on hnnsmission properties 

We shall first discuss zeros and bounds of the transmission amplitudes t,,t,, t p , t p ,  
and then give a bound on the angle between the extraordinary ray and wavevector. 
The transmission amplitudes are particularly simple at normal incidence (see [4], 
equations (78) and (79). From these we find that 

l L l ?  Itpol < 2 n i / ( n l +  n o )  

I tsel> Itpel < 2n , / (n ,  + nl )  

(31) 

(32) 
where n, is the lesser of no and ne. R r  comparison, we note that the transmission 
amplitude at normal incidence into an isotropic medium of index n2 is 2n l / (n i+n2) .  
The bound (31) on 1, and I,,,, follows by inspection of equations (78) and (79) in 
[4]. The bound on 1, is obtained as follows: it is clear from equation (78) in 141 that 
the magnitude of t ,  is largest when a = 0. With the use of equation (77) in [4], 
t,(a = 0) reduces to 

1, = sgn(P)[(E,+ E e k ,  - + nn,) (33) 
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where n = none/nl. Setting the derivative of la, with respect to n7 equal to zero 
leads to a cubic in n,, namely e0ee(n + 2 5 )  - (eo + ~.)n?, = 0, which has one real 
root provided E,, + E ,  >- %e1. As y2 varies from 0 to  1, the cubic expression does 
not change sign provided eo < e.( 1 t n,/nl) and ee < eo( 1 + no/nl). When these 
conditions are satisfied (which is the usual case) the maximum of 1; is thus obtained 
by the greater of the y = 0 and y = &1 values. This gives the bound (32). The case 
of 1 is similar, with p = 0 giving the largest magnitude, and leading to the Same 
bound subject to the same conditions. (The same results follow by maximizing t ,  as 
given in equation (20) of [6]). 

At general incidence a clue to the maximum of It,\ is provided by the zero of 
t,, and vice versa. From equation (34) of [4] we find (correcting the misprinted sign 

pe 

of t,, 

t ,  = 2qlN,-11u(k?q, + q t 4 3  - Y W k ?  + n,n.)l/la(s, + 90) + b(q,+ %)I 
1, = 2qiNF1L3(k: + qtq,)/[a(qi t no) + b(qi t qe)l .  

(34) 

(35) 

We see that t ,  is zero when p2 = 1 (optic axis perpendicular to the plane of 
incidence) and so expect the maximum of 1t,1 to occur for that configuration. When 
p 2  = 1 we have qe = qm, and 

It,(P2 = 1)l = 2n,/(q, + n,). (36) 

This expression provides the correct bound when E, < eo (as for calcite). The general 
bound appears to be 

Itsel <2q, / (q ,  + no (37) 

where q, is the lesser of qo and qm. Conversely, we see that 1 ,  is zero when p = 0, 
and so expect 1 ,  to have maximum magnitude when the optic axis lies in the plane 
of incidence. The values of 1, when a2 = 1 or y2 = 1 provide the upper bound for 
k.1: 

It,l < 2q,/(q1 t 4.J = 11,(u2 = 1)l = It,(r2 = 1)l. 

I, = -2kiNt1(qi  + q,)Pk?/[a(qi t qo) + b(qi + n e ) ]  

(38) 

We now turn to t p  and tp .  From equation (42) in [4] these are 

(39) 

(40) 

Note that t ,  and tpe can pass through zero as the angle of incidence increases, while 
1, and I, keep the Same sign. Since IF is zero when a g o  - TIC is zero, we expect 
the maximum of 11,1 to occur when this condition is Satisfied, as for example when 
p2 = 1. In this configuration (optic axis perpendicular to the plane of incidence) we 
find 

tpe = 2k iNl1 (q i  + d ( a q , - y I O / [ a ( q i  + 9,) + b(q ,  + ne)] 

It,(Pz = 111 = P Q i / ( Q i  + Qo)1 ( n ~ / n o )  Qo = qo/ 'o .  (41) 

This expression is not an exact bound for 11,,,1, but is a very good approximation to it. 
The last transmission amplitude, tpe. is expected to have maximum magnitude when 
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P = 0, since this makes tpo zero. Also, the incident p-polarized electric field vector 
lies in the plane of incidence, and Itp[ should be a maximum when the transmitted 
extraordinary electric field vector also lies in this plane, which happens when p = 0. 
For this configuration we find, from (40). 

When p = 0 we have from equations (23) and (24) of [4] that 

e7qe = noneq7 - a y K  Ac (43) 

and this enables a reduction of (42) to 

t&(P = 0) = 4k:[~;q: -+ (n,n,K + a y q ,  Ae)’1/[e~(n,n,w2/cz + qrq,)’]. (44) 

I have not found an analytic expression for the maximum value of (44). An expression 
which approximates well the bound of Itpel is 

PQI/(QI + Q r ) l  (ni/nO Qi = qi /c i  (45) 

where E, is the lesser of eo and e,, and q: = c lw2 /c2  - IC‘. The bounds on the 
transmission amplitudes are shown in figure 5. 

We summarize the conditions under which the transmission amplitudes are zero 
or maximal: 

(i) t ,  zero when p = 0, It,l maximum when p’ = 1; 
(ii) 1, zero when a(k:q,  + 4,402) = 7 I C ( k ;  + qlqe) ,  It,l maximum when a2 = 1 

(iii) Ip zero when a q ,  = y I ( ,  Itp\ maximum when p = 0; 
(iv) Ip zero when p = 0, ltPl maximum when 0’ = 1. 

The final transmission property we mention is the angle between the extraordinary 
ray r and wavevector IC,. The extraordinary wavevector is (K, 0, q e ) ,  and the ray 
direction is given in [4], equation (31). In section 5.4 of [4] we found that at normal 
incidence the greatest angle between T and I C ,  is 6 = arctan(lAel/2nOn,). It is 
remarkable that this Same bound appears to be valid at all angles of incidence. 
However, the angle between r and k, = (IC, 0, 4,) is bounded by a curve rather than 
a constant. The bounding curve increases from 6 at normal incidence to a larger 
value at grazing incidence, this value being increased by index matching. 

or y2 = 1; 

4. Discussion 

The bounds given in this paper have been obtained by a mixture of physical argument, 
analysis and numerical trial. Some are explicitly labelled approximate, others are 
believed to be exact, but a rigorous proof for _all possible values of the physical 
parameters has not been found. Thus, from the strict mathematical viewpoint, they 
are merely conjectured bounds, which are being presented here in the belief that they 
may prove useful nevertheless. 



9468 J Lekner 

Acknowledgment 

This work has benefited h.om mnstructive suggestions made by the referees. 

References 

[I] Born M and Wolf W I965 Rincipks of Optics (Oxford Pergamon) 
121 Yam A and Yeh P 1984 Optical Wmnr k Crysrals (New York Wilqr) 
131 h a m  R M A and Bashara N M 1987 E l l ~ n u t ~ y  rmd Polarized tighr (Amsterdam: Nonh-Holland) 
141 Lekner J 1991 Z Phys..: Condatr Mane 3 6121 
151 Lekner J 1987 7hcoy of RepccMn (Dordrechr: Maninus Nijhoff) 
161 Lekner J 1992 1 Phys.: Cnndmr Manu 4 1387 


