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Abstract. Bounds are given for the possible values of the following quantities: the
reflection amplitudes ry, Tpp, ey, and rpy; the transmission amplitudes fso, tse, tpo, tpe;
the Brewster angle given by the zero of rpp; and the angle between the extraordinary ray
and the extraordinary wavevector. These bounds are for arbitrary orientation of the optic
axis relative to the reflecting surface and for any angle of incidence. Index maiching
enhances the effects of anisotropy, particularlty in the reflection properties. For example,
the bounds cn the Brewster angle approach 0° and 90° as the refractive index of the
medium of incidence tends to the lower of the ordinary and extraordinary refractive
indices. A formula is given for the Brewster angle in the case where the optic axis lies
in the plane of incidence. The conditions under which the four transmission amplitudes
can be zero are also discussed.

1. Introduction

The purpose of this note is to present limits on the reflection and refraction properties
of uniaxial crystals. Although bounds on the optical properties of crystals {as a
function of the crystal orientation, for example) are of practical and theoretical
importance, there seems to be no discussion of such in the optical texts (see for
example [1-3]). We will use the analytical results recently obtained for this problem
[4]. As in [4], the reflecting surface is in the x—y-plane, and the plane of incidence
is the z—z-plane, with the z-axis directed normally into the crystal. The medium
of incidence has refractive index n,, the crystal is characterized by ordinary and
extraordinary refractive indices n, and n,, and the angle of incidence is . The
optic axis ¢ has direction cosines «, @ and ~ with the x-, y- and z-axes, with
a?+[32++% = 1, so that ¢ is the unit vector

c=(e,p,7) 1)

In the reflection—refraction problem, the tangential component of the wavevector is
the same for the incident, reflected and refracted waves, and is written as

K= (-‘2) 7, sin 6. @)

The normal components of the wavevector are respectively q,, —q,, g, and ¢, for the
incident, reflected, and refracted ordinary and extraordinary waves. The values of ¢,
and g, are given by

g = ewifct - K? g2 = et fet - K? 3)
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where ¢;=n? is the dielectric constant of the medium of incidence, and €o=nl (n,
and n, are the ordinary and extraordinary refractive indices). In contrast to 9os Qe
depends on the orientation of the optic axis: :

q. = II'no{eee,,,t..Jz/cz ~ (e, - FPA)KHV? avyKAc]/e, 4)
where ¢, = n, Ae = ¢, — €, and

€, = ni = ¢, + 7% Ae. &)

Bounds on g, were established in [4], where it was shown that g? is bounded by g2
and by

¢ = ew?/ct — K2, ©)
The g2 bound is attained when 8 = O (optic axis in plane of incidence) and
aq, = £y K. The g2 value is attained when 32 = 1 (and o,y = 0), the optic axis
then being perpendicular to the plane of incidence, and also when a K +~vq, = 0. As
noted in [4], when a K +vq, = 0 (wavevector k, = (K, 0, ¢.) is perpendicular to the
optic axis) the extraordinary wavevector and ray directions are both that of (v,0, —a),
and are thus perpendicular to the optic axis (a, 3, ). Also E, is then parallel to the
optic axis. Since E, is always perpendicular to the optic axis (see equation (7) below),
the ordinary and extraordinary electric fields are orthogonal in this configuration.
The requirements on the direction cosines are avy < 0, v%¢, < (a® + v2)¢;. For
given o and -+ satisfying the above conditions, the angle of incidence is given by
nysinf = n{+%/(a® + 4*)}/2, which shows that Smell’s law is obeyed by the
extraordinary ray (and wavevector) in this case.

(10 ]
x

Figure L. Reflection from a crystal face. The z-axis is the inward normal, the z-z-plane
is the plane of incidence, and the angle of incidence is 8. The refracted wave directions
are not shown. The optic axis ¢ is shown by the broken line. It is specified by direction
cosines , 3 and +: for example - is the cosine of the angle between ¢ and the z-axis.

The ordinary and extraordinary electric field vectors are given by
Eo = No(_ﬁqov(xQo - 7K5 lGK)

E,= N,(aq?—vq.K, Be,w?/ct, v(ew? /e — g?) — ag K). )]
N, and N, are normalization factors. A convenient normalization is to unit
magnitude, i.e. so that E2 and E? are both unity. Note that E, is always orthogonal
to the optic axis, and also to the ordinary wavevector (K,0,q,).
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2. Bounds on the reflection amplitudes and on the Brewster angle
We begin with r, which gives the amplitude reflected into the s polarization when

the incident wave is s polarized. From equations (34) and (35) of [4] we find that ry
car be written in the form

re = (a(q — ¢,) + b(q, — ¢.)) /(a(q; + g} + b(q; + ¢.)) 8

where

a = (agq, - vK){a(kiq + 9,¢>) - vK(k? - qq,)) b= B2kl + q.4,)
q=q+ Ktané =kf/q k2 = eqw?/c? k2 = et/ et. e

When the optic axis lies in the plane of incidence, r reduces to

r(8=0) = (¢ - &)/ + ) (10)
When the optic axis is perpendicular to the plane of incidence, r reduces to
(B2 =1) = (91— gu) /(91 + tu)- (11)

The two expressions (10) and (11) are bounds on r (see figure 2). When ¢, > €,
the 3 = O value is the upper bound and the 5% = 1 value is the lower bound. Note
that (10) and (11) are of the form (g; — ¢,)/{q, + q;), which is the s polarization
Fresnel amplitude for reflection at a boundary between isotropic media of refractive
indices n; and n, (see for example [1] section 1.5.2, or [5] section 1-1). That
bounds on r, are attained in configurations where the optic axis lies parallel and
perpendicular to the plane of incidence is in accord with physical expectation, given
that E, is always normal to the optic axis, and the electric vector of the incident s
wave is normal to the plane of incidence.
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Figure 2. Reflection amplitudes re and 7y, as functions of the angle of incidence,
drawn for calcite (n, =1.658, ne = 1.486) in air. The full curves are the bounds of
equations (10), (11), (15) and (16), with z, y, z or zr indicating that the optic axis lies
along the =,y or z axes, or in the z-z-plane (the plane of incidence). The points are
calculated from (8) and (12) with randomly chosen a, 8, and @ (uniformly distributed
over their range).



9462 J Lekner

1

-1
o® 30° e0® a0°

Flgure 3. Reflection by calcite in castor oif (ny = 1.48): the amplitudes rpp and ry are
plotted versus the angle of incidence, the curves from equations (10), (11), and (19),
(16), the points for random values of «, 8, and 8, calculated from (8) and (12).

Next we look at r,, the amplitude reflected into the p polarization when the
incident wave is p polarized. This is also shown in figure 2. From equation (42) in

[4] we find that
— 7y = 102K5 (a1 + 9)(K2 — 010,) + (9 + ¢)(q, — YK ){a(klq, — q,9?)

— v K (k3 - a3/ [F7K5(ay + a0 ) (K + a0} + (9 + ¢,)(agy — Y K)

x {a(k3g. + aq2) — YK (K} + a.9.)}] (12)
At grazing incidence, where ¢, — 0,r,, — 1. From (8) we sce that r, — —1 at
grazing incidence, It is interesting to note that for reflection from arbitrarily stratified
isotropic media, r, — 1 and r, — —1 at grazing incidence ([5] section 2-3). For
reflection from an isotropic layer on a uniaxial substrate, it is also true that r,, — 1
and rg — —1 at grazing incidence ([6] section 4). The cross-reflection amplitudes

ry and 7, go to zero at grazing incidence, for a crystal with or without an isotropic
overlayer,

When the optic axis lies in the plane of incidence, the expression (12) reduces to
rp(B=0)=(Q, - Q)/(Q,+ Q) (13)

where
Q= g/, Q, =q,/n,n, q.% = e,ywzlcz - K2, (14)

Bounds on r_ may be obtained from geometrics which are special cases of
2 = 0. When the optic axis lies along the intersection of the plane of incidence and
the reflecting plane (¢ || =), and with Q, = g,/n n,,

1"pp(‘:‘2 = 1) = (Qc - Ql)/(Qe+ Ql) (15)

When the optic axis coincides with the surface normal (reflection from a basal plane}),
we find from equation (51) in [4] that, with Q = ¢, /¢, = q, /non.

(7 =1)=(Q-Q)/Q+ Q) (16)
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where g, is given by equation (49) in [4]:
@ = e(W?/? - K?[e,) = (e,/¢.)dn- 17

The expressions (13), (15) and (16) are of the form (Q,—Q,}/(Q,+Q,), which is the
p polarization Fresnel amplitude for reflection at a boundary between isotropic media
with dielectric constants €, and €,, with Q; = ¢,/€,,Q@; = q,/¢, ([1}, section 1.5.2;
[S] section 1—-2) From figure 2 we see that (15) and (16) are bounds for r,,. When
€, > €, the o> = 1 value is the upper bound, and the 2 = 1 value is the lower
bound.

For a boundary between isotropic transparent media, the Brewster angle is defined
by r, = 0, which gives tanfly = n,/n,. Let us define the Brewster angle for
a boundary between an isotropic medium of index n; and a uniaxial crystal with
indices n, and n, by r,, = 0. Then the bounds (10) and (11) also provide bounds
on B, namely

tanz aB(az = 1) = leo(ee - El)]/[q(eo - 61)] (18)
tan? 8p(+? = 1) = [e{e, = €)]/[€1 (€. = €1)] (19

These expressions have been given as equations {62) and (52) in [4], respectively.
They are special cases of the following formula, obtained from (13):

tan? 9g(8 = 0) = (€. — €1€,)/[e1(e, — €))]. (20)

This equation gives the Brewster angle when the optic axis lies in plane of incidence.
Note the effect of an index-matching fluid: the range of 8y expands to (0°,90°) when
¢, tends to the smaller of ¢, and ¢,.. This is illustrated in figure 3, which shows the
pp and ss reflection amplltudes for calc:te in castor oil.

Finally we consider the r,, and ry, reflection amplltudes These give the amount
reflected into the p polanzauon when s polarization is incident, and vice versa, At
normal incidence, from equation (73) in [4],

_ . _ 2apB nn(n, —n,)
rsp - rps - a? + ﬁz (nl + no)(nln'r + none) ’ (21)

The magnitude of the prefactor 2a3 /(o? + %) is maximized when |o = |8}, and is
then unity. The magnitude of the remaining factor is maximized by v = 0 (the optic
axis then lies in the reflecting plane, as in reflection by a prisin face of a hexagonal
crystal), Thus at normal incidence

|T'sp|’ |TW} < (nlin’o - ne‘)/[(nl + no)(nl + ne)} (22)
where the right-hand side is attained when the optic axis is ¢ = (+1/vZ, £1/v/2,0).

The same result follows from [6], equation (19). A fair approximation for the general
incidence bound is suggested by (22):

Irpls 17l S (01lde = 9w/ [(01 + 90 (a1 + au)]- (23)
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The maximum of the right side of (23), as a function of the angle of incidence, occurs

when g,9, = q,(q; + g, + ¢,), which may be reduced to the following quartic in
Y= (cql/w)z =g cos? 9:

y4 + 2({u + 'u)y3 + 4uv'y2 —u2pl=0 . (24)

where u = (e, — €;)/2 and v = (€, — ;) /2. The relevant solution of this quartic is

y= (V2 - 1(u+v)/2 = (V2 - 1), + €, — 2¢;) /4, plus terms of even order in
Ae = ¢, — €, Thus a maximum occurs at an angle given approximately by

c0s2 @ = (VZ = 1)(e, + €, — 2€;) /4, (25)

The value of the right-hand side of (23) at this angle, to lowest order in Ae/(e, +
€. —2¢), 18

[Ae/I(VZ - 1)2(eo + €. — 2¢1)). (26)

This expression suggests that index-matching enhances the cross-reflection amplitudes,
as is indeed the case.

The general form of the s-to-p and p-to-s reflection amplitudes is, from
cquation (47) of [4],

T Tps = 20{aqy = YK)(q, — q)k k2 /[a(q, + q,) + b(q, + q.)] 27

the upper sign applying to r,, the lower to r,. A better approximation than (23) to
the bound on {ry,| and |r| is obtained by calculating r, in the special configuration

where 3 = 1/2 and oK + vq, = 0. The latter condition, discussed in [4] following
equation (29), makes E,_ parallel to ¢ (also the extraordinary wavevector and ray
direction are the same, and perpendicular to the optic axis). When aK + vq, =0
we have from equation (22) in [4]

o? K = 4*¢2 gt =qk. (28)

If in addition 32 = 1, the values of a® and ~? are fixed when the angle of incidence
is specified:

of = (equ/w)/(2e)  ¥' = (cK/w)?[(2e,) (29)
and the p-to-s reflection amplitude becomes

m zsgn(aﬁ)nlneQI(QO - Qm)(QOQm + I(Z)
w (qi + qo){zeer(qum + 61""‘2/c2) + I(z[ee(qu + Im — qo) + el(Qm - q'a)]}

(30}

T

This expression provides an approximation to the bounds on r,; and ry, as shown in
figure 4.
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Figure 4 The cross reflection amplitudes rps and rg, for calcite in air. The points
are for randomly chosen angles of incidence and optic axis orientation, the curves are
approximate bounds from equations (23) and (30) (dashed and full curves, respectively).

-1

Figure 5. Bounds for the transmission amplitudes tsw, tw, tpe, tpo as a function of the
angle of incidence, for cakite in air. The solid curves are bounds on £z and ty,
{equations (37) and (38)); the dashed curves are approximate bounds on tpo and fpe
(expressions (41} and (45)).

3. Bounds on transmission properties

We shall first discuss zeros and bounds of the transmission amplitudes t, ¢, toos tpes
and then give a bound on the angle between the extraordinary ray and wavevector.
The transmission amplitudes are particularly simple at normal incidence (see [4],
equations (78) and (79). From these we find that

|tso|’ Itpol < 2"‘1/("1 + no) (31)
|f‘se|5|tpc| Sznl/(nl"'nl) (32)

where n; is the lesser of n, and n,. For comparison, we note that the transmission
amplitude at normal incidence into an isotropic medium of index n, is 2n, /(n,+n,).
The bound (31} on ¢, and 1, follows by inspection of equations (78) and (79) in
[4]. The bound on ¢, is obtained as follows: it is clear from equation (78) in [4] that
the magnitude of t, is largest when o = 0. With the use of equation (77) in [4],
t. (o = 0) reduces to

te = SEN(B)[(o + €)e, — €oe ]2/ (€, + mny) (33)
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where n = n,n,/n,. Setting the derivative of 2, with respect to n. equal to zero
leads to a cubic in n.,, namely €,e.(n +2n.,) — (¢, + €.)n3 = 0, which has one real
root provided e, + €, > 33¢,. As +° varies from 0 to 1, the cubic expression does

not change sign provided €, < €,(1+ n./n) and ¢, < €,(1 + n,/n;). When these
conditions are satisfied (which is the usval case) the maximum of ¢2, is thus obtained
by the greater of the v = 0 and v = %1 values. This gives the bound (32). The case
of ¢, is similar, with 3 = 0 giving the largest magnitude, and leading to the same
bound subject to the same conditions. (The same results follow by maximizing ¢, as
given in equation (20) of [6]).

At general incidence a clue to the maximum of |t | is provided by the zero of

t.., and vice versa. From equation (34) of [4] we find (correcting the misprinted sign
of 1,

o = 2qNo a(k2a, + 9.92) — YK (K2 + qa.))/[ala + ¢,) + (g + ¢.)] (34)
te = 2q N1 B(ES + 019,) /[a(a; + 4,) + B(a; + ¢o)]- (35)

We see that ¢, is zero when 82 = 1 (optic axis perpendicular to the plane of
incidence) and so expect the maximum of |t | to occur for that configuration. When
B8% =1 we have g, = q,, and

ltee(8% = D] = 2¢;/(g1 + qu)- (36)

This expression provides the correct bound when ¢, < ¢, (as for calcite). The general
bound appears 10 be

|teel < 201/ (@1 + q1) (37)

where g; is the lesser of q, and g,. Conversely, we see that ¢, is zero when 3 =0,
and so expect 1, to have maximum magnitude when the optic axis lies in the plane
of incidence. The values of ¢,, when o? = 1 or v2 = 1 provide the upper bound for
Iso:

ltel < 201/ (a1 + ¢0) = Ito(0 = 1)| = [teo(v? = )| (39)
We now turn to t,, and .. From equation (42) in [4] these are
too = —2ky Ng'(gy + 90)BK3 [[a(ay + ¢o) + b(ay + 4] (39)

toe = 2k, N7 gy + g0)(ag — v K) /[a(a + ¢,) + blg + ¢)]  (40)

Note that t,, and ¢, can pass through zero as the angle of incidence increases, while
t, and t,, keep the same sign. Since ¢, is zero when ag, — vIC is zero, we expect
the maximum of |¢,,| to occur when this condition is satisfied, as for example when

A% = 1. In this configuration (optic axis perpendicular to the plane of incidence) we
find

Iqt]:o(ﬁ2 = l)l = [ZQII(Ql + Qo)] (nl/no) Qo = qo/Eo' (41)

This expression is not an exact bound for [¢], but is a very good approximation to it.
The last transmission amplitude, 1., is expected to have maximum magnitude when
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B =0, since this makes ¢, zero. Also, the incident p-polarized electric field vector
lies in the plane of incidence, and |t .| should be a maximum when the transmitted
extraordinary electric field vector also lies in this plane, which happens when 3 = 0.
For this configuration we find, from (40).

2k {(aq? — vq K?) + [v(k2 - q2) — aq K?]}V/?

t =0) = 42

(£=0) o(R2g, + a2 - TKURE + 492)) “2
When @ = 0 we have from equations (23) and (24) of [4] that

€y, = Ngneq, — avK Ae (43)

and this enables a reduction of (42) to
tpe(3 = 0) = 4k} [ G2 + (non K + avg, Ae))/[(nonw?/c? + q,4,)7).  (44)

I have not found an analytic expression for the maximum value of (44). An expression
which approximates well the bound of |¢,] is

2Q,/(Q:+ Q@) (ny/n)) Qi =aq/q (45)

where ¢; is the lesser of ¢, and e, and ¢? = €;w?/c? — K% The bounds on the
transmission amplitudes are shown in figure 5.

We summarize the conditions under which the transmission amplitudes are zero
or maximal:

(i) t,, zero when 3 = 0, |t, | maximum when 5% = 1;

(izi) t, zero when a(kiq, + ¢,¢2) = vK (k1 + q.q.), |t,] maximum when o? =1
or v-=1;

(iit) t,, zero when agq, = v K, |{,.| maximum when 3 = 0,

(iv) t,, zero when 3 =0, |t,,| maximum when 3% = 1.

The final transmission property we mention is the angle between the extraordinary
ray r and wavevector k.. The extraordinary wavevector is (K,0,¢q.), and the ray
direction is given in [4], equation (31). In section 5.4 of [4] we found that at normal
incidence the greatest angle between » and k., is § = arctan(|Ae|/2n,n,.). It is
remarkable that this same bound appears to be valid at all angles of incidence.
However, the angle between » and k, = (K ,0, g,) is bounded by a curve rather than
a constant. The bounding curve increases from é at normal incidence to a larger
value at grazing incidence, this value being increased by index matching.

4. Discussion

The bounds given in this paper have been obtained by a mixture of physical argument,
analysis and numerical trial. Some are explicitly labelled approximate, others are
believed 10 be exact, but a rigorous proof for all possible values of the physical
parameters has not been found. Thus, from the strict mathematical viewpoint, they
are merely conjectured bounds, which are being presented here in the belief that they
may prove useful nevertheless.
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