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Reflection of plane acoustic compressional waves at a stratified transitional layer between two 
fluid media is treated by means of a nonlinear differential equation for the reflection amplitude. 
When the normal component of the wave vector divided by the local density changes 
monotonically, the reflectance is shown to be no greater than that at a sharp transition between 
the same two media (at the same angle of incidence}. A related Riccati-type differential 
equation for the reflection amplitude leads to the Rayleigh (or weak-reflection} 
approximation. This approximation is simple, easy to evaluate, and works well at all 
wavelengths provided that the reflection is weak. 

PACS numbers: 43.20.Fn, 43.20.Bi, 43.30.Bp 

INTRODUCTION 

It is known that particle waves (satisfying the Sehr'6- 
dinger equation) reflect less from a gradual transition be- 
tween two media than from a sharp transition. This intu- 
itively plausible result is also generally true for the 
electromagnetic s wave but holds only under restricted con- 
ditions for the electromagnetic p wave (Ref. 1, See. 5-4 ). For 
acoustic waves the situation is more complex still, as will be 
shown here. At normal incidence the reflection from a tran- 

sitional layer will be less than that from an abrupt transition 
between the same two bounding media, provided the prod- 
uct of the density p and the local phase velocity c is a mono- 
tonically increasing or decreasing function of the depth z. At 
a general angle of incidence, we will show that, if pc and c 
both increase or both decrease monotonically, the reflectiv- 
ity will be no greater than that from an abrupt transition. 

The above results are derived from a Rieeati-type equa- 
tion satisfied by a quantity related to the reflection ampli- 
tude; this equation was introduced by Kofink 2 and used by 
Brekhovskikh 3 in the calculation of wave reflection (for ref- 
erences to earlier work in related fields see Chap. 5 ofRef. 1 ). 
A similar approach was used in Ref. I to rederive the Ray- 
leigh approximation 4 for electromagnetic waves of both po- 
larizations. This same approach is adapted here to the reflec- 
tion of acoustic waves in Sec. IV, and compared with a 
simple solvable model in See. V. 

I. PROPAGATION AND REFLECTION IH STRATIFIED 
MEDIA 

Consider sound propagation in an inhomogeneous me- 
dium. Letp -t-pa,p -t-pa be the density and pressure within 
the medium, with p and p being the equilibrium values, and 
Pa andp, the time-dependent oscillating variations associat- 
ed with the acoustic wave. The linearized wave equation for 
po is 5 

1 02P. 1 Vp,,.Vpa =0, (1) 
where the adiabatic derivative (Op/Sp)s =c 2 gives the 

square of the local value of the phase velocity. The force due 
to gravity has been neglected, apart from its effect on stratifi- 
cation according to density. 

We will be interested in the reflection of sound at a strat- 

ified layer between two uniform media ( 1 and 2), the proper- 
ties of the interfacial layer being characterized by a density 
p (z) and a velocity c (z), where z is the depth ( planar stratifi- 
eation is assumed). For a plane monochromatic wave propa- 
gating in the zx plane, solutions of ( 1 ) have the form 

p• (z,x,t) = e i(tcx- •'ø P(z), (2) 
where •o is the angular frequency of the wave, and K is the x 
component of the wave vector, which is a constant of the 
motion: 

K= (o/c•)sin 0• = (ro/c2)sin 02. (3) 

Here Cl and c2 are the phase velocities in the two hounding 
media, and 0• and 02 are the angles of incidence and refrac- 
tion [equivalently, (3) can be read as the invariance ore- 
times the cosine of the grazing angle ]. The differential equa- 
tion for P(z) can be put in the form 

d(1 dP• t, 7- j + P = O, (4) 
where q(z) is defined by 

q2(z) = •0*/c•(z) -K 2. (5) 
From (3) and (5), the limiting values of q, the normal com- 
ponent of the wave vector, are ql ---- (co/cOcos 00 q• 
c•)cos 02. Asnotedin Ref. 1 (Sec. 14), Eq. (4) hasthesame 
form as that for the electromagnetic p wave, which may be 
reduced to simpler form by transformation of the indepen- 
dent variable. 6 The analogous reduction for acoustic waves 
is obtained by introducing a new depth variable dilated in 
proportion to the local value of the density, dZ = p dz: 

d2p+Q2P=O, Q=q. (6) 
dZ 2 p 

The same approach is taken by Godin.* Our main use of (6) 
here is to motivate the introduction of Q as an effective nor- 
mal component of the wave vector. 
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The reflection and transmission amplitudes r and t are 
defined in terms of the limiting forms of the acoustic pres- 
sure in media 1 and 2: 

e iq'z q- r e- iq'z*--P(2) -,t e iq•z. (7) 

In the case of a sharp transition (an interface of zero thick- 
hess) atz = 0, the continuity ofPand dP/dZ, implied by (4) 
or (6), gives 

ro = (Q• - Q2)/(Q• + 
(8) 

to = 2Q,/(Q, + 

From Snell's law (3) and the definitions of q and Q, Q = K / 
p tan 0, so the reflection and transmission amplitudes may 
be written as 

P2 tan 02 --p• tan 01 
ro•- , 

P2 tan 02 +p• tan 0• (9) 
2m tan 02 

to= 
P2 tan 02 + ps tan 01 

These familiar results go back to GreenS; they are rederived 
here to introduce the notation, and because we will show 
that, under certain conditions on the p and c profiles, 
Irl < I/ol. 

II. AN IDENTITY FOR THE REFLECTION AMPLITUDE 

The method by which the linear second-order differen- 
tial equation like (4) can be transformed into a nonlinear 
first-order equation for a quantity proportional to the reflec- 
tion amplitude is well known: See, for example, Ref. 3, Sec. 
17 or Ref. 1, Chap. 5. We give only an outline here and then 
derive the identity relevant to the problem at hand. 

Equation (4) can be written as a pair of coupled linear 
equations in P and D = dP/p dz = dP/dZ. We set 

P=F+G, D=iQ(F--G), (10) 

eliminate P and D, and obtain a pair of coupled equations for 
Fand G: 

F' = iqF-- (Q'/2Q) (F-- G), 
(11) 

G' = -- iqG + (Q'/2Q)(F- G). 

Here and in what follows, the prime denotes differentiation 
with respect to z. Note that, in uniform media, F• e iqz and 
G--e -i•. In medium 1, therefore, the ratio ?= G/F is 
equal to exp(- 2iqtz)r. For the reflection problem, in 
which there is no wave traveling toward the interface from 
medium 2, G = 0 in medium 2 and 

e- 2iq"r•?--*0. (12) 

An equation for • is obtained from ( 11 ) by multiplying the 
first equation by G/F 2, the second by l/F, and subtracting 
one from the other. The result is the Riccati-type equation 

•/+ 2iq? -- (Q'/2Q) ( 1 - •) = 0. ( 13} 

This equation remains valid in the presence of attenuation 
(when q and Q become complex), but the following equa- 
tions require modification. 

Our interest is mainly in the absolute magnitude of the 
reflection amplitude, Irl, and in the reflectivity R = Irl 2. We 
therefore set r = I rl e i•. The real and imaginary parts of ( 13 ) 

•' q- 2q= - (Q'/2Q) (l• I q- I?l-')sin •0. (15) 
Equation (14) may be written as 

(16) 

integration of which fromz = -- oo to q- oo, with the use of 
(12), gives the identity 

log 1 q- Irl =f_• dz • cos•, (17) 
III. AN UPPER BOUND FOR THE REFLECTIVITY 

Let ct be the dimensionless quantity on the right side for 
(17). Then Ir[ = tanh a/2 and 

R = tanh 2 a/2. (18) 

Clearly R •1, a result true for reflection from any passive 
medium (see, for example, Sec. 2-2 ofRef. 1 ). This physical- 
ly necessary upper bound can be much improved in certain 

Suppose that Q'/Q has one sign throughout the stratiti- 
cation, which implies that Q increases or decreases mono- 
tonically. [ In the absence of absorption, Q = q/p is either 
real or imaginary: When c2 > c, it is imaginary for 0• > 0½ 
= arcsin(ct/c 2) and there is total internal reflection. ] Since 

the cosine of the (unknown) phase ½ is bounded above by 
+ I and below by -- 1, the right side of (17) is bounded 

above by 19g(Qm•,/Q•i, ), where Qm• and Q, nin are the 
greater and lesser of Q• and Q2- Thus 

(1 + Irl)/(1 --Irl)<Q,•/Q•, (19) 
and 

R = IrlZ<[(Q, - Q2)/(Q, + Q2)] 2 =Ro (20) 

if Q is monotonic. Thus a profile for which Q is monotonic 
will not reflect more than an abrupt transition between the 
same two media, at the same angle of incidence, and at any 
frequency. (The reflectance from a step profile is indepen- 
dent of frequency.) 

Under what circumstances is Q monotonic? From (5 } 
and Q = q/p, 

QZ(z) = [coe/c2(z) -- K2]/p2(z). (21) 

From (21) we find 

dQ 2 _2( dlog(pc} K 2 dlogc.• (22) = /' 
Normal incidence {K=OJ: dQ2/dz has the sign of 

-- d 1og(pc)/dz, so if pc increases or decreases monotoni- 
crally, the reflectivity at normal incidence is never greater 
than that for a sharp interface. 

General incidence: If pc and c both increase or both de- 
crease monotonically, the reflectivity at any angle will be 
smaller than the reflectivity (at the same angle) at an abrupt 
change between the same bounding media. [In this case, 
there is no Green's angle, at which R o = 0; see Ref. 1, Eq. 
(1.61).] If, on the other hand, pc increases monotonically 
and c decreases monotonically (or vice versa), the expres- 
sion within large parentheses in (22) may change sign, in 
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which case there is the possibility of greater reflection than 
from a sharp interface. 

IV. THE RAYLEIGH APPROXIMATION 

The nonlinear first-order equation (13) gives ?(z), 
where the limit as z-. - oo of exp(2iqlz)? is the reflection 
amplitude. It is possible to obtain a Riccati-type equation for 
r(z), with r( -- • ) being the reflection amplitude itself. In- 
stead of the substitutions (10), we write 

P =fe • + g e - "•, (23) 

D = iQ( fe • - ge- •), (24) 

where ½ (known as the phase integral) is defined by 

½(z) d•q(•). (25) 

Since the original equation (4) can be written as two simul- 
taneous equations in P and D, namely, 

pD' +q•P=O, D=P'/p, (26) 
we have two equations for the two unknown functions f and 
g. Solving these gives 

f' + (Q'/2Q)(f-ge -2•) = 0, (27) 

g' + ( Q '/2Q) (g - fe •'•) = 0. (28) 

We see that f and g are constant where Q is constant, in 
particular at z= - oo (in the uniform medium 1). Wc 
choose the normally unspecified lower limit in (25) to be 
such that 

½(z)--,qtz as z-,--•. (29) 

In the same limit, this makes P tend to 

f( -- oo )elq'• + g( -- o• )e -iq'•. (30) 

Thus, if we define a reflection function r(z)=g(z)/f(z), 
r( -- oo ) is the reflection amplitude, since this is, by defini- 
tion, the ratio of the coefficient of e - iq., to that of e i•'z. To 
obtain an equation for r(z), we take g times (27) minusf 
times (28) and divide the result byf 2. The result is the non- 
linear first-order equation 

r'(z) = (Q'/2Q) [ e • - r•(z) - •'•]. (31) 

In the reflection problem, g( •o ) = 0 and thus r( •o ) = 0. 
Integration of (31 ) from -- oo to + •o thus gives 

r-=r( -- oo) = - dz Q' [e•i•-- re(z)e-2i•]. 
• 2Q 

(32) 

This is an exact result for the reflection amplitude, 
which remains valid in the presence of attenuation in the 
stratification. The Rayleigh (or weak-reflection) approxi- 
mation is obtained by setting r(z) = 0 on the right of (32): 

rn = -- dz 2Q e2•' (33) 
An explicit expression for the Rayleigh reflectivity can be 
obtained in the long-wave limit, where ½ is nearly constant 
over the stratification and 

Rn = Irn 12--, [« log( Q1/ Q2) ]2. (34) 
Since (« log x)2> (x -- 1 )a/(x + 1) 2 for positive x, the Ray- 

leigh reflectivity is not less than the Green (or sharp transi- 
tion) value: 

Ro = [(Q, - Q2)/(Q, q- Q2)I 2 [353 
in the long-wave limit. 

The correction to the Rayleigh approximation reflec- 
tion amplitude is the second term in (32); namely, 

Ar= f; dz Q' r•(z)e •. (36) . 2Q 

The physical meaning of r(z) is that of the reflection ampli- 
tude era stratification "truncated" atz [see See. 5-1 ofRef. 1 
for an interpretation of the related r(z) ]. Thus the Rayleigh 
approximation can be expected to be accurate if the reflec- 
tion from any truncation of the stratification is weak. This is 
so particularly in the case of smoothly varying properties in 
the short-wave (high-frequency) limit. 

V. A SIMPLE EXAMPLE: REFLECTION BY A UNIFORM 
LAYER 

We will compare the results of the previous sections 
with the exact reflectivity of a uniform layer ofthickness Az, 
density p, and speed of sound c, between uniform media I 
and 2. The reflection amplitude may be obtained by match- 
ing solutions made up of exp(4-iqz) to exp(iq•z) 
+ r exp( -- iqtz) in medium 1, and t exp(iq2z) in medium 2, 
using the continuity ofPand P'/p. The result is (el. Ref. 3, 
Eq. 5.10) 

r = e 2i•'•' r• + r 2 e • ¾ a• (37) 
1 + r•r 2 e •'*az ' 

where z• and z 2 are the boundaries of the uniform layer, 
Az = z• -- Zl is its thickness, and r•,r 2 are the Green reflec- 
tion coefficients at the two boundaries: 

r, = (Q, - Q)/(Q1 q- Q), 
(38) 

r2 = (Q - Qa)/(Q + Q•). 

The reflectivity is the absolute square of (37); for real q•, q, 
and q2, this is 

R = Irl = d + 2rtr• cos 2q Az + 4 (39) 
1 + 2r•ra cos 2q Az + • 

For fixed frequency and angle of incidence (fixed q and Q's ), 
this is a periodic function of the layer thickness Az, with 
period rr/q (equal to •rc/(o = g/2 at normal incidence), pro- 
vided q is real. The extrema of (39) occur when cos 2qAz 
= __+ 1; these values are 

R+ = •tt • Q2! Q,Q• 4- ' 
(4O) 

The theorem of Sec. III states that ifQ(z) is monotonic, 
R gRo. Applied to the problem at hand, this reads that if Q 
lies between Qt and Q:, the reflectance must be no greater 
than Ro. The implication is that R + is greater than R_ when 
the value of Q is between Qt and Q•. From (40), we find that 
R+ is greater than R_ when 

(Q• - Q• ) (Q• - Q ] ) <0, (41) 
which is true when Q lies between Q• and Q•, in agreement 
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FIG. 1. Normal incidence reflectivity from a uniform layer. The solid 
curve is the exact reflectivity [ Eq. (39) ]; the dashed curve is the Rayleigh 
approximation [ Eq. (44) ]. The density values used (in g/cm 3) arept = 1, 
p = 1.7, P2 = 2; the corresponding sound speeds (in kin/s) are ct = 1.5, 
c = 1.7, % = 2. The horizontal line shows the upper bound derived in Sec. 
III. 

Ra = -•- log •-• + log Q2 + 2 log 
Xlog Q2 cos 2q Az] . (44) Q 

(The argument of the cosine follows from •2 - •l = qAz..) 
The agreement with the exact result (39) is good when I rtl 
and [r21 are small, since then « log(Ql/Q) • (Ql - Q)/ 
(Qi q- Q)and[ log(Q/Q2)• (Q- Q2)/(Q + Q2). Toesti- 
mate the error in the first of these relations, set Ql = Q 
+ 6Q. We find that the two sides agree to order (6Q) 2, the 
difference [ log(Ql/Q) - (Q• - Q)/(Q• + Q) having the 
leading tern (6Q/Q) 3/24. 

Figure 1 compares the nomal incidence exact and ap- 
proximate reflectivities, as a function of the thickness of the 
layer. The parameters are chosen to approximate a layer of 
sediment on a seafloor or lake bottom. 9 We note that the 
Rayleigh reflectivity is most accurate where the reflection is 
smallest. 

with the theorem. 

Finally, we will compare the exact reflectivity with that 
obtained from the Rayleigh approximation of Sec. IV. We 
rewrite (33) as 

r R -- dz e 2i4 E (log Q). (42) 
2 • dz 

At z I and z2, log Q is discontinuous, by the amounts log (Q / 
Ql) and 1og(Q2/Q). The derivative of a step function is a 
delta function of strength equal to the magnitude of the step, 
so, for the uniform layer under consideration, 

rR: -- -•- ( e2i•' log -• + e2i• log -•), (43) 
and the Rayleigh approximation reflectance is 
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