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Measurement of the fringes produced by interference between direct and reflected light in the Lloyd mirror
configuration can give information about the refractive-index profile of the reflecting surface, as has recently
been shown. The experiment is performed near grazing incidence, and the analysis given so far has been
based on the short-wave approximation, which is known to fail at grazing incidence, and no account has been
taken of the difference between s and p polarizations. I give exact reflection phases for the solvable exponen-
tial refractive-index profile for both polarizations and develop general results for an arbitrary smooth profile
that are valid near grazing incidence. I find that, for profiles that are slowly varying on the scale of the wave-
length, the path-integral approximation to the phase is accurate except for the first few interference fringes,
which come from glancing incidence reflections. The s and p phases are very nearly equal under the same
conditions. Explicit formulas are given for dielectric function profiles that are linear or quadratic in the
depth. The characteristic length of the quadratic profile may be found from the variation in the fringe spac-
ing. © 1996 Optical Society of America.
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1. INTRODUCTION

Klein, Opat, and collaborators have suggested1 and
implemented2,3 a method of obtaining information about
surfaces by measurement of the interference fringes pro-
duced in the Lloyd mirage configuration, so called because
total reflection by a stratified medium near grazing inci-
dence is precisely the mirage-producing situation. This
method is one possible implementation of the holographic
reconstruction idea put forward by Smith.4 The analysis
given2,3 and the inversion method of Allen and
Lipperheide5 use the semiclassical short-wave approxi-
mation, in which the phase difference between the direct
and the reflected waves is calculated along ray paths, as
shown in Fig. 1.
The direct ray in Fig. 1 has length L2 1 (H 2 h)2 and

lies entirely in medium 1 of index n1 . The reflected ray
has two straight parts that lie in medium 1, of lengths
AL1

2 1 H2 and AL2
2 1 h2, plus a curved part along

which the phase increment is, in the ray approximation,

Dc ' 2
v

c
E
0

z0 n2~z !dz

An2~z ! 2 n2~z0!
2 p/2. (1)

A derivation of relation (1) is given below (see also Refs. 6
and 7); z0 is the turning point at which the wave vector
component perpendicular to the stratification (the z com-
ponent) becomes zero. The transverse (x) component of
the wave vector is constant by translational invariance in
the x direction, which implies Snell’s law,

n cos u1 5 n~z !cos u~z ! 5 n~z0!, (2)

where u1 is the glancing angle of incidence and u (z) is the
glancing angle within the variable-index medium. Equa-
tion (2) defines z0 , which we see is a function of the angle
0740-3232/96/0901809-07$10.00
of incidence. (We assume here that the refractive-index
profile decreases monotonically with z, so that there is at
most one turning point at each angle of incidence.) The
normal component q(z) of the wave vector is zero at the
turning point:

q~z ! 5
v

c
n~z !sin u~z ! 5 6

v

c
An2~z ! 2 n2~z0! (3)

[the second equality follows from Eq. (2)]. The phase in-
crement along the curved part of the ray is *k–ds where k
is the wave vector and ds is an element of path length.
This can be decomposed into contributions from motion in
the x and z directions: let

K 5
v

c
n1 cos u1 5

v

c
n~z !cos u~z ! 5

v

c
n~z0! (4)

be the constant x component of the wave vector and
(again in the ray approximation)

Dx ' 2E
0

z0 dz

tan u~z !
5 2n~z0!E

0

z0 dz

An2~z ! 2 n2~z0!
(5)

be the transverse displacement of the ray in the graded-
index medium. Then

Dc ' KDx 1 2E
0

z0
q~z !dz 2 p/2, (6)

which reduces to relation (1). The extra term 2p/2 is a
correction to the ray approximation, valid at short wave-
lengths for all dielectric function profiles that are smooth
enough to be approximated by a linear variation in the
neighborhood of the turning point [see, for example, Ref.
7, Sec. 6–7 and Eqs. (10.11)–(10.14)].
The phase difference between the reflected and the di-

rect rays is
© 1996 Optical Society of America
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D 5 Dc 1
v

c
n1F AL1

2 1 H2 1 AL2
2 1 h2

2 AL2 1 ~H 2 h !2G
5 Dc 1

v

c
n1F 2 Dx 1

2Hh

L
1

~H2 1 h2!Dx

2L2 G
1 O~L23!. (7)

The variation of this phase difference with position on the
screen (i.e., with h) leads to interference fringes. The
quantity 2Hh/L is the leading term in the expansion of
the geometric path difference, and by itself it would give a
uniform fringe spacing. Variation of the fringe spacing
thus may give information about the refractive-index pro-
file, through Dc . The geometric and reflection phase con-
tributions to the fringe spacing are considered in detail in
Section 4.

2. COMPARISON OF EXACT RESULTS
WITH THE SHORT-WAVE PHASE FORMULA
The interference pattern on the screen in Fig. 1 can in
principle be found by solving the diffraction problem with
a line source (a slit) and a gradient-index boundary. The
ray approximation is the classical limit, and the short-
wave result [relation (1)] for Dc approximates the ray lo-
cally by a plane wave with wave vector along the ray di-
rection. In the formulas (1) and (6) no distinction is
made between the s and p polarizations (i.e., between the
TE and TM waves), and use is made of short-wave results

Fig. 1. Direct and reflected ray paths in a Lloyd’s mirage con-
figuration. The horizontal distance from source to detector is
L 5 L1 1 Dx 1 L2 . The reflected ray path is drawn for indices
n1 5 1.50 and n2 5 1.49, with a linear decrease in n2(z) from
n1

2 to n2
2: n2(z) 5 n1

2 1 (n2
2 2 n1

2)z/Dz. For this profile
the equation of the curved ray is z 5 x(1 2 x/Dx)tan u1 ; the ray
enters the variable index medium at x 5 0 and z 5 0 and exits
at x 5 Dx and z 5 0, where Dx 5 4Dz sin u1 cos u1/sin

2 uc . The
vertical scale is expanded: the actual glancing angle is
u1 5 0.7uc ' 4.6°, and Dx ' 24Dz.
near grazing incidence, where it is known that they fail
(Ref. 7, p. 133). These approximations will be examined
in this paper.
We will still assume that the cylindrical waves diverg-

ing from the line source can be approximated by plane
waves. The term exp(iKx) represents the motion in the
x direction throughout the stratification, giving a phase
shift KDx for the curved part of the ray; we will therefore
concentrate on the wave motion in the z direction. If the
incoming plane wave is exp(iq1z), the reflected wave will
be (for s polarization) rsexp(2iq1z) in medium 1. In the
total reflection situation (n1 . n2 , cos u1 . n2/n1), rs
5 exp(ids), where in the short-wave approximation7

ds ' da 5 2E
0

z0
q~z !dz 2 p/2

5 2
v

c E0
z0
dzAn2~z ! 2 n2~z0! 2 p/2. (8)

We assume that the refractive index decreases monotoni-
cally from n1 at z 5 0 to n2 at z 5 Dz. Then at grazing
incidence (u1 → 0) the turning point z0 tends to zero, and
the short-wave approximation to rs tends to 2i. This is
wrong: It is known that at grazing incidence rs always
tends to 21 for all stratifications (Ref. 7, Sec. 2–3). Let
F(z) and G(z) be two linearly independent solutions of
the s-wave equation

d2E

dz2
1 q2~z !E 5 0 (9)

in the range of variable index, namely, 0 < z < Dz.
Then, from Eq. (2.25) of Ref. 7,

rs 5
q1q2~F, G ! 1 iq1~F, G8! 1 iq2~F8, G ! 2 ~F8, G8!

q1q2~F, G ! 1 iq1~F, G8! 2 iq2~F8, G ! 1 ~F8, G8!
,

(10)

where

~F, G ! 5 F1G2 2 G1F2 , ~F, G8! 5 F1G28 2 G1F28 ,

~F8, G ! 5 F18G2 2 G18F2 , ~F8, G8! 5 F18G28

2 G18F28 , (11)

and F1 5 F(01), F2 5 F(Dz2), F18 is the derivative of
F(z) evaluated at z 5 01, etc.
It is immediately clear from Eq. (10) that rs → 21 as

q1 → 0. When n1 . n2 and cos u1 . n2/n1, the normal
component of the wave vector in medium 2 is imaginary:

q2 5
v

c
An2

2 2 n1
2 cos2 u1 5 i

v

c
An2~z0! 2 n2

2 5 iuq2u.

(12)

In the total reflection situation the reflection amplitude
thus takes the form
rs 5
q1@~F, G8! 1 uq2u~F, G !# 1 i@~F8, G8! 1 uq2u~F8, G !#

q1@~F, G8! 1 uq2u~F, G !# 2 i@~F8, G8! 1 uq2u~F8, G !#
. (13)
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The wave equation (9) is linear, with real coefficients, and
thus the functions F(z) and G(z) may be taken to be real.
Then Eq. (13) implies that

ds 5 2 arctanH ~F8, G8! 1 uq2u~F8, G8!

q1@~F, G8! 1 uq2u~F, G !# J . (14)

We see again that rs → 21 as q1 → 0, since ds → 6p at
grazing incidence.
A comparison of the approximate da [as given by rela-

tion (8)] with the exact phase [Eq. (14)] of the reflection
amplitude has been given for the hyperbolic tangent pro-
file in Fig. 6–9 of Ref. 7. Here we consider a refractive-
index profile that is solvable for both s and p polariza-
tions, namely, the exponential profile (see Sec. 2–5 of
Ref. 7)

n~z ! 5 H n1

n1 exp~z/b !

n2

z , 0
0 < z < Dz
z . Dz

, (15)

where b 5 Dz/log(n2/n1). The s-polarization solutions
are Bessel functions F(z) 5 Js(u) and G(z) 5 Ys(u),
with argument u and order s given by

u 5 n1
v

c
ubuexp~z/b !, s 5 Kubu 5 n~z0!

v

c
ubu. (16)

Note that the argument and the order are equal at the
classical turning point z 5 z0 .
For p polarization the solutions are uJp(u) and

uYp(u), where

p2 5 ~Kb !2 1 1 5 s2 1 1. (17)

From Eq. (2.98) of Ref. 7, we find that the p reflection
phase is
z0 5
n1u1

2

2udn/dzuz 5 0
1 O~u1

4! (20)

and thus that

E
0

z0
dzq~z ! 5

v

c
E
0

z0
dzAn2~z ! 2 n2~z0!

5 S v

c
n1

2

udn/dzuz 5 0

D u1
3

3
1 O~u1

5!. (21)

For such profiles, Eq. (20) shows that the Lloyd mirror ex-
periment near grazing incidence probes only depths of
order u1

2/ud log n/dzuz50.
More diffuse profiles can have zero first derivative at

z 5 0, and n(z) ' n1 2 1/2z2ud2n/dz2uz50, in which case

z0 5 S n1

ud2n/dz2uz50
D 1/2u1 1 O~u1

3!, (22)

and the phase integral is independent of the second de-
rivative to leading order in u1 :

E
0

z0
q~z !dz 5

p

4
v

c
n1u1 1 O~u1

3!. (23)

The short-wave approximation da to the s wave reflection
phase ds is compared with the exact phase in Fig. 2. We
see that the short-wave approximation fails at grazing in-
cidence but becomes accurate away from grazing inci-
dence in cases (such as the example used here) in which
the profile is smooth and thick on the scale of the wave-
length. Note also that ds and dp agree closely in these
dp 5 2 arctanH ~F8, G8! 1 ~F, G8!/u1 1 ~F8, G !/u2 1 ~F, G !/u1u2 1 uq2u@~F8, G ! 1 ~F, G !/u1#

q1@~F, G8! 1 ~F, G !/u2 1 uq2u~F, G !# J , (18)
where now F(z) 5 Jp(u) and G(z) 5 Yp(u). [From Eqs.
(2.26) and (2.27) of Ref. 7 we see that the reflection am-
plitude for the normal component (Ez) of the electric field
is 2rp and that for the tangential component (Ex) it is rp .
At grazing incidence the normal component is dominant
for the p wave, so the phases of rs and 2rp apply to the Ey
and Ez components. Equation (18) gives the phase of
2rp .]
For the exponential profile, da may be evaluated ana-

lytically. We find that

da 5 2n1
v

c
ubu~sin u1 2 u1 cos u1! 2 p/2, (19)

where u1 is the glancing angle of incidence and
n1 cos u1 5 n(z0). This formula applies in the total re-
flection region, where u1 , arccos (n2/n1). Note that da
approaches 2p/2 at grazing incidence, with da 1 p/2
tending to zero as 2

3n1(v/c)ubuu1
3. The proportionality of

the phase integral to the cube of the glancing angle of
incidence near grazing incidence is universal for pro-
files that have a finite derivative at z 5 0: From
n1 cos u1 5 n(z0) and n(z) ' n1 2 z udn/dzuz50 we find
that
circumstances (Appendix A gives the relationship be-
tween ds and dp for the exponential profile).
The exact s-wave phase is given by Eq. (14) and is seen

to depend on solutions of the wave equation, and their de-
rivatives, evaluated at the boundaries of the inhomoge-
neous reflecting region. The approximate s-wave phase
da 5 2*0

z0q(z)dz 2 p/2 integrates the phase increment
q(z)dz only up to the turning point z0 . It takes no ac-
count of the evanescent penetration of the wave into the
region beyond the classical turning point. It might be
thought that the use of the full JWKB wave functions in
Eq. (14) would lead to a phase dsw , which does not have
the deficiencies of da . We find, however, that although
the resultant limiting value rs → 21 is in accord with the
general theorem of Ref. 7 for reflection at grazing inci-
dence, the improved short-wave phase dsw fails at small
glancing angles, just as the simpler phase da did. Nei-
ther da nor dsw gives the correct linear variation of phase
with glancing angle, which will be shown to be a general
property in Section 3. Both fail because of the applica-
tion of short-wave wave functions to a situation in which
the problem has a long-wave character at glancing inci-
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dence (where the normal component of the wave vector
q1 → 0), even when (v/c)Dz 5 2pDz/lvac is large.

3. REFLECTION PHASE NEAR
GRAZING INCIDENCE
In this section it will be shown that the phase for small
glancing angle u1 is linear in u1 , and the coefficient of u1
will be evaluated for two classes of refractive-index pro-
files. Let us write Eq. (14) as

ds 5 2 arctan~Q/q1!, Q [
~F8, G8! 1 uq2u~F8, G !

~F, G8! 1 uq2u~F, G !
.

(24)

From arctan(X) 5 sgn(X)p/2 2 X21 1 O(X23) we have

ds 5 sgn~Q0!p 2 2q1 /Q0 1 O~q1 /Q0!3, (25)

where Q0 is the grazing incidence limiting value of Q.
Since q1 5 n1(v/c)sin u1 , Eq. (25) shows that ds is linear
in u1 small glancing angles, if Q0 exists.
Next we consider profiles [such as the exponential pro-

file of Eq. (15)] that are linear in z for small z. Near
grazing incidence the normal component of the wave vec-
tor, q(z) 5 n(z)(v/c)sin u (z), is small, and the short-
wave approximations fail. To solve wave equation (9) we
assume that n(z), and therefore also the dielectric func-
tion «(z) 5 n2(z), are linear in z for small z. Near the
turning point z0 we have

q2~z ! ' ~z 2 z0!
v2

c2 S d«

dz D
z0

. (26)

Define a dimensionless variable z by

z 5 ~z 2 z0!k0 , k0
3 5

v2

c2 S 2
d«

dz D
z0

. (27)

Fig. 2. Reflection amplitude phase for the exponential profile as
a function of the glancing angle, from grazing incidence to the
critical angle. The profile parameters are n1 5 1.50,
n2 5 1.49, vDz/c 5 100. The layer thickness Dz is thus 50/p
' 15.9 vacuum wavelengths. The critical angle uc is ;6.6°, and
according to Eq. (A13) the linear region extends to u l ' 2°. The
dashed curve is the short-wave approximation da of Eq. (19), and
the dotted line is the glancing incidence variation [relations (33)
and (34)]. The solid curve gives the exact ds and dp of Eqs. (14)
and (18); for the profile parameters used, the s and p reflection
phases are not distinguishable on this scale.
Then wave equation (9) transforms to

d2E

dz2
2 zE 5 0, (28)

the solutions of which are the Airy functions Ai(z) and
Bi(z). Thus F(z) ' Ai(z), G(z) ' Bi(z) are two linearly
independent approximate solutions of the wave equation.
These solutions are accurate near the turning point z0 ,
which is at small depths z near grazing incidence. The
general formula (14) for ds requires evaluation of F and G
and of their derivatives at z 5 0 and z 5 Dz; the corre-
sponding values of z are

z1 5 2z0k0 , z2 5 ~Dz 2 z0!k0 . (29)

For all profiles, z0 → 0 at grazing incidence, so we are
interested in the values of Ai(z) and Bi(z) and of their
derivatives at z 5 0 and z 5 Dzk0. We assume that the
profile characteristics and the wavelength of the light are
such that Dzk0 @ 1; from the Airy function asymptotic
forms9

Ai~z! ; 1/2p21/2z21/4 exp~22/3z3/2!,

Bi~z! ; p21/2z21/4 exp~2/3z3/2!, (30)

it follows that Bi dominates at the base of the inhomoge-
neous layer. The fact that the Airy functions do not pro-
vide an accurate solution for large z [except for the pro-
files for which e(z) is linear in z at all z, for which the
Airy functions are exact solutions7] does not matter:
the solution that is accurately Bi(z) at small z will domi-
nate at large z in all cases and cancel out from ds , as we
shall see. At the turning point where z 5 0 we use
the values9

c1 5 Ai~0 ! 5 Bi~0 !/A3 5 @32/3G~2/3!#21,

c2 5 2Ai8~0 ! 5 Bi8~0 !A3 5 @31/3G~1/3!#21.
(31)

From Eqs. (30) and (31), neglecting terms of order
exp[24/3(Dzk0)

3/2], we have

Q0 ' 2
c2k0
c1

5 2
31/3G~2/3!

G~1/3!
k0 ' 20.729k0 . (32)

We note that this negative value of Q0 applies to all pro-
files for which n(z) decreases linearly with z for small z.
All such profiles therefore have linear variation of the re-
flection phase with the glancing angle:

ds 5 2p 1 S 2c1c2 D S vn1

ck0
D u1 1 O~u1

3!. (33)

For exponential profile (15) the dimensionless parameter
vn1/ck0 takes the grazing incidence value

vn1

ck0
→ F n1vDz/c

2 log~n1 /n2!G
1/3

. (34)

Figure 2 compared the s wave phase predicted by rela-
tions (33) and (34) with the exact phase for the exponen-
tial profile.
Another important class of profiles has n(z) or «(z)

quadratic in z at small z: Let

«~z ! 5 «1~1 2 z2/D2! (35)
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and set

z 5 az, a2 5
D

2n1v/c
, a 5 ~aq1!2. (36)

Wave equation (9) then reduces to

d2E

dz2
1 ~a 2 z2/4!E 5 0, (37)

for which the standard solutions are parabolic cylinder
functions10 U(2a, z), V(2a, z). The function V domi-
nates for large z:

U~2a, z! ; za21/2 exp~21/4z2!,

V~2a, z! ; S 2p D1/2z2a21/2 exp~1/4z2!.

(38)

Thus when Dz/a @ 1 the grazing incidence limit of Q0 is

Q0 '
1
a
U8~0, 0!

U~0, 0!
5 2

A2G~3/4!

aG~1/4!
' 20.478/a (39)

[see Eqs. (19.3.5) of Ref. 10]. From Eq. (25) it follows that

ds 5 2p 1
G~1/4!

G~3/4!
~n1vD/c !1/2u1 1 O~u1

3!. (40)

For comparison, we rewrite the result [Eq. (33)] for linear
variation in the dielectric function, «(z) 5 «1(1
2 z/d 1 ...):

ds 5 2p 1
2G~1/3!

31/3G~2/3!
~n1vd/c !1/3u1 1 O~u1

3!. (41)

Provided that a limiting value of Q as q1 → 0 exists,
the phase of the reflection amplitude is linear in the
glancing angle u1 . The coefficient of u1 is determined by
the variation of n(z) in the outer boundary of the reflect-
ing layer. This may be expected on physical grounds,
since the classical turning point z0 approaches the outer
boundary at grazing incidence, and the wave is evanes-
cent beyond z0 .

4. LLOYD MIRAGE FRINGE SPACING
We have seen that the approximate short-wave phase da
given by relation (8) and the more complete dsw both fail
at grazing incidence, though in different ways. Never-
theless, for profiles that are smooth and thick on the scale
of the wavelength, the semiclassical phase da is accurate
in a large portion of the total reflection region, namely, for
u l & u1 < uc , where u l 5 (n1vd/c)

21/3 or u l 5 (n1vD/
c)21/2 for linear or quadratic variation of the index at
small z, respectively. The interference fringe pattern is
determined by the total phase given in Eq. (7), with
Dc 5 KDx 1 ds for s-polarized light:

D 5 ds 1 KDx 1
v

c
n1@AL1

2 1 H2 1 AL2
2 1 h2

2 AL2 1 ~H 2 h !2#. (42)

From Fig. 1 we see that

H/L1 5 tan u1 5 h/L2 ; L1 1 Dx 1 L2 5 L, (43)
so that h 5 (L 2 Dx)tan u1 2 H and

L1 5
L 2 Dx
1 1 h/H

, L2 5 S hH D L 2 Dx
1 1 h/H

. (44)

The expression in the square brackets in Eq. (42), which
is the length of the straight-line parts of the reflected ray
minus the length of the direct ray, is equal to

2Dx 1
2Hh
L

1
~H2 1 h2!Dx

2L2
1 O~L23!. (45)

Thus, since K 5 n1(v/c)cos u1 ,

D 5 ds 1 n1v/cF ~cos u1 2 1 !Dx 1
2Hh
L

1
~H2 1 h2!Dx

2L2 G 1 O~L23!. (46)

The experimental results are photographs of fringes,
seen as a function of h, which itself depends nonlinearly
on the angle of incidence. Note that the lateral displace-
ment Dx is a function of the angle of incidence: For linear
variation of the dielectric function, n2(z) [ «(z)
5 «1(1 2 z/d), we find that z0 5 d sin2 u1 , and the ray
approximation gives

Dx ' 2n~z0!E
u0

z0 dz

A«~z ! 2 «~z0!
5 4d sin u1 cos u1 ,

ds ' da 5 2
p

2
1

4
3

~n1vd/c !sin3 u1 . (47)

For quadratic variation, «(z) 5 «1(1 2 z2/D2), we have
z0 5 D sin u1 and

Dx ' pD cos u1 ,

ds ' da 5 2
p

2
1

p

2
~n1vD/c !sin2 u1 . (48)

When we put these expressions into Eq. (46) and write u1
in terms of h using (L 2 Dx)tanu1 5 H 1 h,

u1~ linear! 5
H 1 h
L

1 O~L23!,

u1~quadratic! 5
H 1 h
L S 1 2

pD
L D 1 O~L23!,

(49)

we obtain the total phase shift as a function of the height
above the surface, h. Each increase of D by 2p gives an
additional fringe; the intensity is proportional to
u1 1 exp(iD)u2 5 4 cos2(D/2). We find that

D~ linear! ' 2
p

2
1 2n1

v

c
Hh
L

1 O~L23!, (50)

D~quadratic! ' 2
p

2
1 2n1

v

c

Hh

L

1
p

2
n1

v

c
D

H2 1 h2

L2 1 O~L23!.

(51)
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We see that, because of the extra factor of sin u1 in both da
and Dx for the linear profile, the fringe spacing

Dh '
2p

dD/dh
(52)

is constant at l1L/2H in the case of the linear profile
(l1 5 l/n1, where l 5 2pc/v is the vacuum wave-
length), whereas it is

Dh '
l1L

2H 1 pDh/L
'

l1L
2H S 1 2

pDh
2HL D (53)

for the quadratic profile. These results indicate that the
two prototypical index profiles, respectively linear and
quadratic in the depth, can be distinguished in the fringe
pattern and that, further, the characteristic length D of
the quadratic variation might be determined from the de-
crease in the fringe spacing with h.

5. SUMMARY AND CONCLUSION
We have seen that the path-integral formula for the re-
flection phase fails at grazing incidence but is otherwise
accurate for profiles that are slowly varying on the scale
of the wavelength. An improved short-wave approxima-
tion, which allows for penetration of the evanescent wave
into the classically forbidden region, gives the correct
phase at glancing incidence but does not give the correct
angle dependence.
An exact solution (for both polarizations) of the wave

equation for the exponential profile shows that the s and
p phases are nearly the same under the same conditions
that make the path-integral phase accurate.
All profiles give a reflection phase near glancing inci-

dence that varies linearly with the glancing angle. Ex-
plicit formulas for this variation are given for linear and
for quadratic variation of the dielectric function with
depth.
The fringe spacing is found to be constant for linear

profiles, equal to Young’s two-slit fringe spacing l1L/2H,
when the total phase difference between the direct and re-
flected rays is calculated to order L22. For the quadratic
profile there is a correction to the total phase of order L22,
which could lead to the extraction of the profile character-
istic length D, provided that the parameters of the experi-
ment are chosen so as to make Dh/HL not too small com-
pared to unity.

APPENDIX A: POLARIZATION
DEPENDENCE OF THE REFLECTION PHASE
We will consider the s and p phases near grazing inci-
dence. From Eqs. (1.26) and (1.27) of Ref. 7 we see that
for p polarization the reflection amplitude is 2rp for the
normal component Ez of the electric field and that it is
1rp for Ex . At grazing incidence the component Ez
dominates; in this paper the reflection phases ds and dp
are accordingly defined by

rs 5 ursuexp~ids!, 2rp 5 urpuexp~idp!, (A1)

for comparison of the phase of Ey (for the s wave) with the
phase of the dominant p-wave component (Ez).
The simplest case to consider is that of a sharp transi-
tion between two media of indices n1 and n2 . The reflec-
tion amplitudes are, in total reflection,

rs 5
q1 2 iuq2u
q1 1 iuq2u

, 2rp 5
q1 /«1 2 iuq2u/«2
q1 /«1 1 iuq2u/«2

, (A2)

where e1 5 n1
2 and e2 5 n2

2 are the dielectric constants
of the two media, q1 5 n1(v/c)sin u1 and uq2u 5 (v/c)
A«1 cos

2 u1 2 «2 for u1 , uc 5 arccos (n2/n1).
Thus

dp 2 ds 5 2Farctan S uq2u
q1

D 2 arctan S «1uq2u
«2q1

D G . (A3)

This phase difference is zero at glancing incidence where
q1 → 0. The phase difference has maximum magnitude
at glancing angle um given by

sin2um 5
«1 2 «2
«1 1 «2

. (A4)

At um , the phase difference is

~dp 2 ds!um
5 4 arctanS n2

n1
D 2 p. (A5)

[Compare Eqs. (10.30)–(10.32) of Ref. 7.] From arctan
(X) 5 sgn(X)p/2 2 X21 1 O(X23) and Eq. (A3) we see
that the phase difference is linear in glancing angle u1 for
a small glancing angle:

dp 2 ds 5 2S «1 2 «2
«1

D 1/2u1 1 O~u1
3!. (A6)

We conclude from Eqs. (A5) and (A6) that, for a sharp
transition, the phase difference near grazing incidence be-
tween the reflected p and s polarizations will be negli-
gible only if n2 ' n1 .
Next we look at the opposite case of a slow transition

between the media of indices n1 and n2 , taking the expo-
nential profile defined in Eq. (15) as a specific example.
For s polarization the solutions are F(z) 5 Js(u) and
G(z) 5 Ys(u); these functions and their derivatives are
to be evaluated at the end points

u1 5 n1ubuv/c, u2 5 n2ubuv/c, (A7)

where b 5 Dz/log(n2/n1). The order s of the Bessel func-
tions is s 5 Kubu 5 n1ubu(v/c)cos u1 , and at grazing inci-
dence this tends to u1 . If vDz/c @ 1 or if n2 ' n1 (i.e., if
the index variation is slow on the scale of the wavelength
or if it is small), u1 and u2 will be large. Also n1 . n2 ,
so u1 . u2 ; thus at grazing incidence, F2 5 Ju1

(u2) will
be small and G2 5 Yu1

(u2) will be large. From Eqs.
(9.3.7) and (9.3.8) of Ref. 11 we find that

F2 /G2 ; 2
1
2
exp@22u1~a 2 tanh a!# [ s, (A8)

where sech a 5 n2/n1 . Thus G2 dominates exponen-
tially over F2 , and the same is true for the derivatives
G28 and F28. The general formula (14) then simplifies to

ds 5 arctan~F18 /q1F1! 1 O~s!. (A9)

Similarly, the p polarization phase shift, given by Eq.
(18), simplifies to
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dp 5 arctan~F18q1F1! 1 O~s! 1 O~u1
21! 1 O~u2

21!
(A10)

Thus the s and p reflection phases differ (near grazing in-
cidence) only by the exponentially small factor s and by
terms of order u1

21 and u2
21. Near equality of ds and dp

at glancing incidence can similarly be expected for any
smooth and slowly varying profile.
Note that the result (A9) together with Bessel asymp-

totics enables us to check the general formula for the
s-polarization phase shift at glancing incidence: From
Eqs. (9.3.23) and (9.3.27) of Ref. 11 we find (see also
Watson,12 p. 232) that

Jv8~v !

Jv~v !
5 S 6v D 1/3G~2/3!

G~1/3!
1 O~v21!. (A11)

This result used in Eq. (A9), together with Eqs. (31), gives
us

ds 5 2p 1
2G~1/3!

61/3G~2/3!
~n1ubuv/c !1/3u1 1 O~s!

1 O~u1
21! 1 O~u1

3!, (A12)

in agreement with Eq. (41), since d 5 ubu/2. The angular
extent of the region where ds is linear in u1 is thus from
zero (glancing incidence) to approximately
u l 5 ~n1ubuv/c !21/3 5 F log~n1 /n2!

n1Dzv/c G1/3. (A13)
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