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Abstract

A Galilean boost to a frame moving with a complex velocity transforms
the Berry—Balazs Airy function solution of the time-dependent Schrodinger
equation into a square-integrable wavepacket. This packet has fixed momentum
and energy; it contracts as time increases to zero, and then spreads again.
The Berry—Balazs solution is revealed as a limiting form of a well-behaved
free particle wavepacket. The topic is suitable for graduate or advanced
undergraduate quantum mechanics courses.

Berry and Balazs [1] considered a solution of the Schrodinger time-dependent equation for
one-dimensional free motion of a free particle of mass m,

h2
ihoy = ———03 Y, (1)
2m
namely
Yap(x, 1) = Ai [q (x — Lar?)] e l—5er, )
Here ¢ is a real wavenumber, defined in terms of the ‘acceleration’ a by
2ma
q3 = 2 (a > 0). 3)

Their assertion that ‘the probability density |y|> propagates in free space without distortion
and with constant acceleration’ produced some interesting interpretations and generalizations
[2-6].

However, this letter shows that the Berry—Balazs solution is a limiting form of a free
particle wavepacket which (as is normal) converges to a focal region and then spreads out
again, and which does not accelerate. Thus the paradoxical ‘acceleration without external
force’ aspect of the Berry—Balazs wavepacket is removed. Likewise, the ‘propagation without
distortion’, which is impossible for normalizable free-space wavepackets (see the discussion
of expectation values below, and particularly equation (18)), is seen to hold only in the non-
square-integrable case. Put simply: it makes no physical sense to speak of position, or velocity,
or acceleration, when their expectation values do not exist. Square integrability is essential in
the quantum mechanics of wavepackets. Indeed, Berry and Balazs say as much in their paper,
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Figure 1. Spreading of the Airy packet (5) in its zero-momentum (# = 0) frame. The modulus ||
and the real and imaginary parts of ¥ are shown at three successive times: ¢t = 0, 27 and 4t where
T = (h/4ma*)'/3. The top frame shows just the real part: the imaginary part is zero at t = 0. The
unit of length is ¢! = (7% /2m>a)'/3, and v is set equal to (a/4m)'/3. The imaginary part is
shown dashed. The centre of probability remains fixed at g (x) = —%. Animations of this packet
can be viewed at http://www.victoria.ac.nz/scps/staff/johnlekner/animations.aspx.

(This figure is in colour only in the electronic version)

and stress that what accelerates in (2) is the position where the argument of the Airy function
is zero, not an expectation value of position.

The function v pp is not square integrable, since the Airy function Ai(z), which is the
regular solution of d*y/dz> = zy, has the asymptotic forms [7, 8] (with ¢ = %z3/ 2)

1
Ai(z) — ﬁz-‘/“ exp(—¢) larg(2)| < 7

4)
Ai(—z) > %1_]/4 sin(¢ + 7 /4) |arg(z)| < 27/3.

In this letter we shall discuss the properties of a square-integrable packet which is a
generalization of (2), namely
Y(x, 1) = Ai [q (x — ut +ivt — %atz)] el r—ut—3ar’] o 5t [ —uttyvi—ar®] it x—gur] (5)
As the time ¢ increases from negative values the packet described by (5) contracts, reaching
its most compact form at ¢ = 0, and then spreads as time increases. Despite the appearance
of (5), we shall show that there is no acceleration, for any u and for any v > 0. The time
development of the wavepacket (5) is illustrated in figure 1.

The wavepacket (5) can be obtained from the Berry—Belazs wavefunction (2) by a
complex-velocity Galilean transformation. In the real Galilean boost [9]

X — x — ut, t—t (6)

the transformed wavefunction is augmented by the phase factor

imu 1
exp [7 (x - Eut)] . @)
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When 1 gp is boosted to the complex speed u — iv, the wavepacket (5) results. In the special
case u = () we regain a solution equivalent to a recent paraxial approximation for planar optical
beams [10].

We now consider the properties of the wavepacket (5). Direct differentiation shows that
it is a solution of the free-particle Schrodinger equation (1). It is square integrable for v >
0, because of the e * factor. (The asymptotic forms given in (4) are applicable because
arg[q (x — ut +ivt — %atz)] = arctan[vt/(x — ut — %aﬂ)] lies between —m /2 and 7 /2).

That the normalization

N=/OO dx [ (x, ) 8

is independent of time follows from the Schrodinger equation (as is shown in standard texts
on quantum mechanics): on replacing time derivatives by space derivatives according to (1)
we find

N = i /OO dxo, (Y 0y — Yo, y™) = 0. ©)
2m J_o

(This is the global (integrated) form of the equation of continuity or conservation of
probability.) At7=0wehave N = [ dx[Ai(gx)]*e*"**/" and the integral representation
(1,7, 8]

1 0 :
Ai(gx) = — / dk ket 30 (10)
2nq )
together with
o0 . ;s
/ dx /K=Y — 275k — k' —i0Q) (11)
—00
gives us, on setting Q = 2mv/h,
3
e () .
2J70q
The expectation values of p = —ihd,, p?, x and x° can all be found analytically. We also list
the mean square deviations (Ap)? = (p?) — (p)? and (Ax)? = (x?) — (x)2:
(p) Loy =200 bne, ape =1 (13)
= m . —_— = — —m . = —
pr=mt om P Ty T Pr=
vk , 1(n\ 1hv 1ha,
(x) = — — — +ut, Ax)y"==|— ) +=—+=-—1". (14)
2a  4mv 8 \mv 2ma 2mv

For comparison, we list the corresponding quantities for the free-space Gaussian packet
[11-14]:

b {mu < 1 ) (X—X()—ul)z}
Do, 1) = ————explime (x —xg— ~ur ) — —— 0" 1 (15

2 4 i z 27 ) 22 +int/m)
S R S P NS O (16)
’ 2m dmb? 2 ’ 2b?

2
(x) = xo + ut, (Ax)? = ! b* + hi ) (17)
2 mb
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We note that the positional mean square deviation is in each case in accord with the general
result [15-17]

2
(Ax)? = (Ax)] + <£> 1. (18)
m

(We use the form valid when the spread is minimum at r = 0.)
It is also interesting to note the respective uncertainty products:

. , I’ 1 ha a*,
Alry. (AXAP) = Z 1+Zm—v3+?t (19)
R ho\?
Gaussian : (AxAp)? = y 1+ (W) 2. (20)

The Gaussian packet has the minimum value 7 /2 of AxAp at ¢ = 0, whereas the Airy packet
has AxAp > h/2, since its square integrability depends on a positive value of v.

If we set u = 0 and let v — 0 we regain the Berry—Balazs function (2). In this limit the
norm diverges as v~!/2, and the expectation values of energy and position also diverge. For
any v > 0 the expectation value of the momentum is zero, and (x) is fixed at v?/2a — i /4mv
[see (14)]. The af? terms in (5) determine the shape and size of the packet, as well as its energy
and momentum, and do not give an actual acceleration.

To sum up, particles in free space do not accelerate, and we have shown that the Berry—
Balazs Airy function solution, which has ar* terms in it that strongly suggest acceleration,
is in fact a limiting case of a well-behaved, square-integrable family of wavepackets. The
expectation values of position and momentum show no acceleration. All is normal except in
the Berry—Balazs limit, where the solution is not square integrable.
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