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Transversely finite sound beams traveling in fluid media with negligible viscous damping and scattering
have seven quantities constant along the length of the beam. The simplest of these is the cycle-averaged
momentum per unit length of the beam. The seven constant quantities are proved to be invariants from
conservation laws. An angular momentum flux density tensor is introduced, in the formulation of conservation
of angular momentum. Examples of the invariants are given, for approximate solutions of the wave equation
�Gaussian beams�, and for a set of exact solutions �generalized Bessel beams�.
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I. INTRODUCTION

Electromagnetic beams and particle beams each have
seven invariants associated with conservation laws �1,2�. By
“invariants” we mean quantities that do not change along the
length of the beam, as the beam diverges from �or converges
to� a focal region. This paper establishes the existence of
analogous invariants for sound beams.

Figure 1 shows the energy and momentum densities of the
�11

G sound beam discussed in Sec. V, in its focal region. The
momentum density �indicated by arrows� varies strongly
through the focal region, yet its integral over a transverse
section does not change. This integral is one of the invariants
to be established below.

It has recently been shown �3� that the cycle-averaged
energy, momentum, and angular momentum per unit length
of an acoustic beam are all constant for beams derived from
a class of exact solutions of the wave equation. If the beam
propagates in the z direction, these quantities are

E� =� d2rē, Pz� =� d2rpz, Jz� =� d2rjz, �1�

where �d2r=�−�
� dx�−�

� dy=�0
�dr r�0

2�d� in Cartesian and cy-
lindrical polar coordinates, respectively. The quantities e, pz,
and jz are densities: e�r , t� is the energy per unit volume,
pz�r , t� and jz�r , t� are, respectively, the z components of the
momentum and angular momentum per unit volume. Over-
bars denote cycle averaging, e.g., ē�r�=T−1�0

Tdt e�r , t�,
where T=2� /� is the period everywhere in the beam, as-
sumed to be of one frequency. The energy content in a slice
dz of the beam is dE=E�dz; hence our notation E�, which
equals dE /dz.

One might think that the constancy of E�, Pz�, and Jz�
follows immediately from the conservation of energy, mo-
mentum, and angular momentum, respectively. This is not
so: in fact, Pz� is truly an invariant �always independent of z,
for any sound beam corresponding to an exact solution of the
wave equation�, while E� and Jz� are not invariants in general.
Further, the invariance of Pz� follows from the continuity
equation �conservation of matter�, not from momentum con-
servation. We shall prove that three invariants follow from
the conservation of momentum, and three more from the
conservation of angular momentum. These invariants are in-
tegrals over elements of the momentum flux density tensor

and of the angular momentum flux density tensor, respec-
tively.

There is recent interest in acoustical tweezers �4,5�, and
there may in the future be applications of acoustical spanners
�using helicoidal beams �6–10��. Momentum and angular
momentum flux densities are needed in the calculation of
forces and torques, and thus underpin the requisite theory of
acoustical tweezers and spanners, respectively.

II. CONSERVATION OF MATTER

The continuity equation �11�

�t� + � · ��v� = 0 �2�

has the cycle average � · p̄=0, where p=�v is the momentum
density. Operating with �d2r on � · p̄=0 gives

FIG. 1. �Color online� The cycle-averaged energy density �con-
tours� and momentum density �arrows� for the �11

G sound beam of
Sec. V, plotted for Kb=5. The beam is hollow in momentum, be-
cause of its helicoidal nature. A three-dimensional picture would be
obtained by rotating the figure about the horizontal axis �the z axis�.
The azimuthal component of the momentum is not shown. The
invariants of this paper are integrals over a transverse section of the
beam at constant z, of physical quantities such as the longitudinal
component of the momentum density pz.
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�
−�

�

dx�
−�

�

dy��xpx + �ypy + �zpz� = 0. �3�

We consider acoustic beams with net momentum in the z
direction, and transversely finite in the x and y directions.
For such beams the first two terms in Eq. �3� are zero. For
example, 	�−�

� dx�xpx= px	−�
� =0. We are left with

�z� d2rpz = �zPz� = 0, �4�

i.e., the momentum content per unit length of the beam Pz�
does not change along the length of the beam. This is our
first invariant, derived without approximation from the con-
servation of matter. Note that the proof of invariance of the
momentum per unit length is based on conservation of mat-
ter, not of momentum.

The momentum density has first, second, and higher-order
terms

p = �v = ��0 + �1 + �2 + ¯ ��v1 + v2 + ¯ �

= �0v1 + ��1v1 + �0v2� + ¯ . �5�

The first-order velocity v1 has zero curl, and can thus be
written as the gradient of a velocity potential V�r , t�, v1

=�V. The velocity potential V satisfies the wave equation
�11�. For acoustic beams of angular frequency � we shall
work in terms of a complex potential

��r,t� = e−i�t��r�, V�r,t� = Re � or Im � , �6�

where the spatial part ��r� satisfies the Helmholtz equation

��2 + K2���r� = 0, K = �/c . �7�

It is clear that the cycle-averages of V and its derivatives are

zero, so v1̄=0. We have previously shown �Ref. �3�, Sec. III�
that v2=0 also. Thus the lowest non-zero term in the cycle-
average of the momentum density is �3�

�1v1 = − �0c−2��tV���V� =
K�0

2c
Im��* � �� . �8�

The final expression holds for both V=Re � and V=Im �.
Thus

Pz� =
K�0

2c
� d2r Im��*�z�� . �9�

We have written an expression for this invariant as an exact
equality, it being understood here �and for like expressions in
the following� that it is exact only to second-order in the
velocity potential.

The invariance of Pz� also follows from the conservation
of energy, as we shall now show. The energy density of a
fluid in which there propagates an acoustic field is �12�

e�r,t� = e0 + �e0 + p0��0
−1�1 +

1

2
c2�0

−1�1
2 +

1

2
�0v1

2 + ¯ ,

�10�

where �0, e0, and p0 are the density, energy density, and
pressure in the undisturbed fluid. The first-order density is
given by �11�

�1 = − �0c−2�tV . �11�

The first-order term in Eq. �10� is e1= �e0+ p0��0
−1�1; using

Eq. �11� and the fact that V satisfies the wave equation gives
us

�te1 + � · S1 = 0, S1 = �e0 + p0�v1, �12�

where S1 is the first-order energy flux density. Since the
cycle-average of v1 is zero, Eq. �12� cycle averages to zero.

Moving on to the second-order energy density term e2

= 1
2c2�0

−1�1
2+ 1

2�0v1
2, and again using �ct

2 V=�2V, we find after
some rearrangement that conservation of energy in second
order takes the form

�te2 + � · S2 = 0, S2 = − �0��tV� � V . �13�

The cycle-average of Eq. �13� is � ·S2=0, leading to the
invariant �d2rS2z. Apart from the factor c2, this is the same as
the invariant we have previously derived from matter conser-
vation �compare Eq. �8��. An analogous situation pertains for
electromagnetic beams �1�, where the momentum per unit
length invariant arises from energy conservation.

III. CONSERVATION OF MOMENTUM

Landau and Lifshitz �11� show from the continuity equa-
tion �2� and from the Euler equation that conservation of
momentum in an isotropic inviscid fluid can be expressed as

�t��vi� + 

k

�k	ik = 0 �i,k = x,y,z� , �14�

where the momentum flux density tensor is given by

	ik = �p − p0�
ik + �vivk. �15�

�We have subtracted the constant diagonal tensor p0
ik from
the Landau-Lifshitz expression, as we can do since only de-
rivatives of �ik occur in Eq. �14�. Again p0 is the pressure in
the undisturbed fluid. With our definition, the zero-order
term �ik

�0� is identically zero.�
The time average of Eq. �14� gives 
k�k�̄ik=0, and inte-

gration over the xy plane gives �z�d2r�̄iz=0. Thus the inte-

grals �d2r�̄iz are invariants, to all orders in the velocity po-
tential.

The first-order term in Eq. �14� is

�0�tvi − �0

k


ik�k�tV = 0 �16�

since the first-order pressure term is given by �12�

p1 = c2�1 = − �0�tV . �17�

The cycle-average of both terms in Eq. �16� is zero. We are
thus left with the second-order terms in Eq. �14�. The cycle-
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average of the time derivative is zero to any order; what
remains is

0 = 

k

�k	ik
�2� = 


k

�k�p2
ik + �0vivk� , �18�

where p2 is the second-order pressure, and is given by �12�

p2 = c2��2 + ��0
−1�1

2�, � =
�0

2c2� �c2

��


0
. �19�

�The subscript zero indicates that the derivative is to be
evaluated adiabatically for the fluid at equilibrium.� The
second-order density term �2 satisfies an inhomogeneous
wave equation �12�, with the source term second-order in the
velocity potential V. We set �2=�0c−2R; from Eq. �A3� of
Ref. �12�,

��ct
2 − �2�R = − K2 � · �V � V� +

1

2
�2��V�2 + ��2��ctV�2,

�20�

where we have used the fact that the velocity potential sat-
isfies the wave equation. We set V�r , t�=C�r�cos �t
+S�r�sin �t and cycle average �20�, using the fact that C and
S satisfy the Helmholtz equation �7�. We find V�V= 1

2 �V2

and ��ctV�2=K2V2, so that

− �2R̄ = K2�� −
1

2
�2V2 +

1

2
�2��V�2. �21�

This equation is solved by

R̄ = R0 − K2�� −
1

2
V2 +

1

2
��V�2, �22�

where R0 is any solution of �2R̄=0. Since R0 is a harmonic
function, it can have extrema only at domain boundaries. In
the case of a beam of finite transverse extent in an un-
bounded fluid, R0 has to be constant in space, and this con-
stant has to be zero.

In addition to �2=�0c−2R̄, we also need

�1
2 = �0

2c−4��tV�2 = �0
2c−2K2V2. �23�

Thus the second-order pressure term cycle averages to

p2 = c2��2 + ��0
−1�1

2� = �0�R̄ + �K2V2� =
1

2
�0�K2V2 − ��V�2� .

�24�

Note that the term depending on � has cancelled out. The
cycle average of the second-order part of the momentum flux
density tensor is therefore

	ik
�2� = �0�1

2
�K2V2 − ��V�2�
ik + ��iV���kV�� . �25�

By operating on Eq. �18� with �d2r, we obtain three in-
variants associated with the conservation of momentum:

Pxz� =� d2r	xz
�2�, Pyz� =� d2r	yz

�2�, Pzz� =� d2r	zz
�2�.

�26�

Whether the velocity potential V�r , t� is expressed as the real
or the imaginary part of the complex potential �=e−i�t��r�,
we have

V2 =
1

2
	�	2, ��xV�2 =

1

2
	�x�	2, ��V�2 =

1

2
	��	2

��xV���zV� =
1

2
Re���x����z�

*�� �27�

�and parallel results involving derivatives with respect to y�.
Thus

Pzz� =
1

2
�0� d2r�K2V2 + ��zV�2 − ��xV�2 − ��yV�2�

=
1

4
�0� d2r�K2	�	2 + 	�z�	2 − 	�r�	2 − r−2	���	2� .

�28�

To obtain the last expression we have used Eq. �27� and also
changed to cylindrical polar coordinates r ,� ,z.

The off-diagonal invariants Pxz� and Pyz� will often be zero
by symmetry. This is clear for the case where � is indepen-
dent of �, since �x=cos ��r−r−1 sin ���, so, for example,

Pxz� = �0�
0

�

drr�
0

2�

d�
1

2
Re���x����z�

*�� �29�

integrates to zero over �. The same is true when the azi-
muthal dependence of � is purely in the factor eim�, since
only terms linear in cos � and sin � remain in the integrand
of Eq. �29�.

IV. CONSERVATION OF ANGULAR MOMENTUM

There are three more invariants of acoustic beams, arising
from the conservation of angular momentum. As in the elec-
tromagnetic case �1�, we need an angular momentum flux
density tensor. This is formed from the momentum flux den-
sity tensor, the Cartesian coordinates, and the completely an-
tisymmetric tensor �ijk with ±1 or zero as elements ��123=1,
�132=−1, �113=0, etc�:

li = 

j



k

�ijkxj	kl. �30�

Then the rate of change of the angular momentum density
j�r , t� is given by

�t ji + 

l

�lli = 0. �31�

This equation expresses the conservation of angular momen-
tum in an acoustic beam. The exact invariants which follow

from the conservation law �31� are �d2r̄zi �i=x ,y ,z�.
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As for the momentum flux density tensor, the lowest non-
zero cycle-average is of second order:

li
�2� = 


j



k

�ijkxj	kl
�2�. �32�

The invariants arise, as before, from integrating the cycle-
averaged angular momentum conservation equation �31�
over a slice of the sound beam at constant z. These invariants
are

Lzi� =� d2rzi
�2� �i = x,y,z� . �33�

Explicitly, the three invariants arising from the conservation
of angular momentum are

Lzx� =� d2r�y	zz
�2� − z	yz

�2�� ,

Lzy� =� d2r�z	xz
�2� − x	zz

�2�� ,

Lzz� =� d2r�x	yz
�2� − y	xz

�2�� . �34�

When the azimuthal dependence in � is absent or purely in
the factor eim�, Lzx� and Lzy� will be zero, by arguments paral-
lel to those used for Pxz� and Pyz� above.

The Lzz� invariant simplifies considerably when expressed
in cylindrical polar coordinates: from

	xz
�2� = �0��xV��zV =

1

2
�0 Re���x����z�

*��

=
1

2
�0 Re��cos ��r� −

sin �

r
�����z�

*�� �35�

and

	yz
�2� =

1

2
�0 Re��sin ��r� +

cos �

r
�����z�

*�� �36�

we have

x	yz
�2� − y	xz

�2� =
1

2
�0 Re��������z�

*�� �37�

so that

Lzz� =
1

2
�0� d2r Re��������z�

*�� . �38�

V. EXAMPLE A: PARAXIAL GAUSSIAN BEAMS

Gaussian beams are approximate solutions of the Helm-
holtz equation; the simplest example is the “fundamental
Gaussian mode”

�00
G =

b

b + iz
exp�iKz −

Kr2

2�b + iz�� . �39�

Here b is the Rayleigh range: the beam waist extends longi-
tudinally over a range of about 2b. A measure of the beam

waist transverse size is �2b /K�1/2. Far from the waist the
beam diverges at angle arctan�2/Kb�1/2 to the axis. When �00

G

is substituted into the Helmholtz equation �7�, we find

K−2��00
G �−1��2 + K2��00

G =
− 2

K2�b + iz�2 +
2r2

K�b + iz�3

−
r4

4�b + iz�4 �40�

instead of zero. The right-hand side of Eq. �40� is negligible
in the region where both of the following relations hold true:

K2�b2 + z2� � 1 and b2 + z2 � r2. �41�

The left-hand sides of both inequalities are smallest in the
focal plane z=0. The Gaussian beam �00

G is thus a good ap-
proximate solution of the Helmholtz equation when �=Kb
�1 and b�r �or ��Kr�.

We shall calculate the quantities E�, cPz�, �Jz�, Pzz� , and
KLzz� , for the fundamental �00

G and for a higher mode �11
G to

be defined below. These quantities all have the same dimen-
sion �of energy per unit length�, and from the discussion
above we expect meaningful results for Gaussian beams
when ��1. Let us first define �11

G :

�11
G =

x + iy

b + iz
�00

G =
rei�

b + iz
�00

G . �42�

For �11
G the same operation as in Eq. �40� gives the right-

hand side

− 6

K2�b + iz�2 +
3r2

K�b + iz�3 −
r4

3�b + iz�4 . �43�

This will again be small at all z when �=Kb is large com-
pared to unity and to Kr.

The quantities we wish to calculate are the invariants cPz�,
Pzz� , and KLzz� , and the �in general� noninvariant quantities E�
and �Jz�. The invariants are, from Eqs. �9�, �28�, and �38�,

cPz� =
1

2
K�0� d2r Im��*�z�� ,

Pzz� =
1

4
�0� d2r�K2	�	2 + 	�z�	2 − 	�r�	2 − r−2	���	2� ,

KLzz� =
1

2
K�0� d2r Re��������z�

*�� . �44�

The noninvariants giving energy and angular momentum
content per unit length are given by �3�

E� =
1

4
�0� d2r�	��	2 + K2	�	2� ,

�Jz� =
1

2
K2�0� d2r Im��*���� . �45�

When � is set equal to V0�00
G �V0 is the amplitude of the

velocity potential V�, lack of azimuthal dependence auto-
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matically makes Lzz� and Jz� zero. The nonzero quantities for
the fundamental Gaussian beam �00

G are

cPz� =
�

2
�0V0

2�� −
1

2
 ,

E� =
�

2
�0V0

2�� +
1

4
�−1 ,

Pzz� =
�

2
�0V0

2�� − 1 +
1

4
�−1 . �46�

Of these cPz� and Pzz� must be independent of z, as we have
proved. The fact that E� is also constant along the length of
the beam is interesting, but, as we noted above, the Gaussian
wave function is approximate and the results derived from it
can only be expected to be accurate in the limit of large �
=Kb.

The �11
G beam carries angular momentum, so we have

more nonzero quantities: the nonzero universal invariants are
�with � set equal to V0�11

G �

cPz� =
�

2
�0V0

2�1 − �−1� ,

Pzz� =
�

2
�0V0

2�1 − 2�−1 +
3

4
�−2 ,

KLzz� =
�

2
�0V0

2�1 − �−1� . �47�

For the energy and angular momentum contents per unit
length of the beam we find

E� =
�

2
�0V0

2�1 +
3

4
�−2 ,

�Jz� =
�

2
�0V0

2. �48�

Again E� and Jz� are independent of z. The remarks about the
validity of the Gaussian wave functions made below Eq. �46�
apply here equally.

VI. EXAMPLE B: GENERALIZED BESSEL BEAMS

A set of exact solutions to the wave equation were dis-
cussed in the context of angular-momentum carrying acous-
tic beams in Ref. �3�. These solutions are

�m�r� = eim��
0

K

dkf�k�eiqzJm�kr�, k2 + q2 = K2. �49�

We have already evaluated the energy, momentum, and
angular momentum per unit length in Ref. �3�, Eqs. �26�,
�22�, and �21�, respectively. It remains for us to evaluate Pzz�
and Lzz� . Since ���m= im�m, we have from Eq. �44�

Pzz� =
1

4
�0� d2r�K2	�	2 + 	�z�	2 − 	�r�	2 −

m2

r2 	�	2� .

�50�

The r integration of the 	�r�	2 term gives

�
0

�

drr��rJm�kr����rJm�k�r��

= �
0

�

drr�k2 −
m2

r2 Jm�kr�Jm�k�r� �51�

by integration by parts, and use of the Bessel differential
equation. Hence the m2 /r2 terms in Eq. �51� cancel, and we
are left with

Pzz� = 2�
�0

4
�

0

�

drr�
0

K

dkf*�k��
0

K

dk�f�k��ei�q�−q�z

��K2 + qq� − k2�Jm�kr�Jm�k�r� . �52�

We now apply Hankel’s integral formula �13�, in the form
�14�

�
0

�

drrJm�kr�Jm�k�r� = k−1
�k − k�� . �53�

This reduces Eq. �52� to

Pzz� = ��0�
0

K

dkk−1q2	f�k�	2. �54�

Finally, we evaluate the nonzero invariant related to an-
gular momentum conservation. This is, from Eq. �44� with
���= im�,

Lzz� = ��0�
0

�

drr Re�im��z�
*�

= ��0 Re�im�
0

�

drr�
0

K

dkf�k�eiqzJm�kr�

��
0

K

dk�f*�k���− iq��e−iq�zJm�k�r��
= m��0�

0

K

dkk−1q	f�k�	2 �55�

again by use of Hankel’s integral formula.
We summarize the results by listing the multiplier M in

the generic expression

��0�
0

K

dkk−1	f�k�	2M . �56�

The multipliers for the three nonzero universal invariants are

cPz�:Kq, Pzz� :q2, KLzz� :mKq . �57�

For the quantities E� and �Jz�, the multipliers are
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E�:K2, �Jz�:mK2. �58�

We note the factor m �the “topological charge” of the beam�
between cPz� and KLzz� , and between E� and �Jz�. This is in
accord with the view that the acoustic beam consists of
phonons, each of energy ��, momentum along the beam axis
�K=�� /c, and angular momentum along the beam axis �m.

VII. DISCUSSION

We have shown that, in general, there are seven invariants
of single-frequency acoustic beams, arising from conserva-
tion laws. For both the generalized Bessel beams, and for the
more limited examples of paraxial Gaussian beams, the re-
sults are consistent with the phonon picture. Note, however,

that for phonons the energy is c times the z component of the
momentum, whereas the cycle-averaged energy density is
greater than c times the cycle-averaged z component of the
momentum density �3�.

In the case of beams based on solutions of the wave equa-
tion with eim� azimuthal dependence, there are in general
only three nonzero invariants. It is both an attractive feature
and a puzzle that the generalized Bessel beams have two
more quantities which do not change along the length of the
beam: the energy content per unit length E�, and the angular
momentum content per unit length Jz�. The special feature
which may be responsible is the absence of evanescent
waves in Eq. �49�, i.e., those with imaginary q. This comes
from limiting the integration over k to the range 0 to K. An
analogous situation pertains in the electromagnetic case �14�.
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