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Abstract

We have developed a continuum model based on two coupled differential equations that explains the complex surface
shapes observed in epitaxial regrowth on micron scale gratings. This model describes the dependence of the surface
morphology on film thickness and growth temperature in terms of a few simple atomic scale processes including adatom
diffusion, step-edge attachment and detachment, and a net downhill migration of surface adatoms. The continuum
model reduces to the linear part of the Kardar—Parisi-Zhang equation with a flux dependent smoothing coefficient in

the long wavelength limit.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of the time evolution of the shape
of crystal surfaces has a long history dating back
to Mullins and Herring who considered relaxation
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during annealing above the roughening tempera-
ture [1]. More recently, shape relaxation below the
roughening temperature has been studied exten-
sively [2—4]. Below the roughening temperature the
problem is complicated by the need to keep track
of the dynamics of atomic steps and the fact that
the surface free energy of crystal facets is singular.
Biasiol et al. [5] have extended the theory of shape
relaxation below the roughening temperature to
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include the effects of atom deposition, and use this
theory to explain the self limiting V-grooves
observed in organo-metallic chemical vapor de-
position growth on corrugated GaAs substrates.
In this paper we present a new continuum model
which we use to interpret measurements of the
shape of corrugated (001) GaAs surfaces under
growth conditions which do not produce faceting.
Facets are not present in our experiments due to
atomic scale roughness associated with atom
deposition in the island growth mode, and the
fact that the surface topography is sufficiently
weak that the surface slope does not reach the low-
energy [111] facets. We show that this model
reproduces the surface morphology that develops
during molecular beam epitaxy (MBE) regrowth
on 1D surface gratings.

2. Conventional modeling of weak surface texture

The evolution of long wavelength, low ampli-
tude, surface structures during GaAs homoepitaxy
can be described by the Kardar—Parisi-Zhang
(KPZ) equation [6,7]: 8,4 = vW?h+4Vh)> + F +
n(x,t). The coefficients in this equation are
constants characterizing the microscopic atomic
processes. The source term #(x,?) simulates the
random arrival of atoms at an average rate F.
According to this equation, a textured starting
surface will develop parabolic mounds that
smooth with time separated by V-shaped valleys.
Recent steady state growth experiments [8] have
shown that the KPZ equation provides a quanti-
tative description of the power spectral density of
the surface morphology of epitaxially grown GaAs
layers for surfaces with low amplitude, long
wavelength, characterized by local slopes <3°.
These experiments are consistent with the leading
term V> in the KPZ equation and not with the
leading term V*/ in the so-called MBE equation
[9,10]. The agreement with this simple KPZ
continuum model suggests that the anomalous
effects associated with the singular free energy of
crystal facets are not important for the growth
conditions in question [4]. This is likely a
consequence of the fact that under our growth

conditions the surface is above the roughening
temperature [11].

In the case of GaAs MBE growth with no
re-evaporation, the linear term V24 in the
KPZ equation means that there must be a
net downhill flux of adatoms proportional to
the negative surface slope: j~ —VA (so that
O;h ~ =V -j~ V?h) [1]. The simplest explanation
for such a downhill current is that it is due to a
negative Ehrlich—Schwoebel (ES) effect, namely a
step edge potential barrier that favors downhill
migration of adatoms. Experiments in metal
epitaxy have shown positive ES barriers [12],
however, the situation for III-V semiconductor
surfaces is much more complex with surface
reconstructions, complex step edge geometries
and a two component (Ga,As) surface [13-15].
Although the simple ball model [1] with Lennard—
Jones type potentials would suggest that the ES
barrier is always positive, more realistic calcula-
tions show that the situation for real materials is
not always this clear, that for certain step
orientations ‘“‘the potential is maximum at the
center of the terrace rather than on the terrace
edge”, even for elemental metals (see pp. 94 and 95
in Ref. [1]). In an influential paper, Johnson et al.
[16] proposed that the mounds observed in GaAs
growth on thermally de-oxidized (00 1) surfaces
were caused by positive ES barriers, which lead to
unstable growth and mounding [16,17]. In later
work, the mounds observed in GaAs buffer layers
were found to be associated with the smoothing of
the surface roughness created during the thermal
oxide desorption from the starting surface and the
mounds were observed to smooth with time
[7,8,18,19], consistent with a downhill flux of
adatoms. Simulations based on the stable KPZ
equation supported these observations [7,8].

A net downhill flux of adatoms could also occur
in the presence of positive ES barriers if other
growth phenomena are present which counteract
the effect of the ES barriers. Two such possibilities
that have been discussed in the literature arise
from the excess energy associated with an atom
incident from the vapor. These are known as
downhill funneling [20] and step edge knockout
[1]. In downhill funneling an adatom deposited
near a step edge will have excess energy that
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enables it to diffuse to a low-potential site close to
the original impact point. In the case of step edge
knockout, an energetic adatom deposited just
above a step edge can push the step edge atom
aside and insert behind the step edge. These
processes all create a downhill flux that could in
principle overwhelm the effect of a positive ES
barrier. Orme et al. [17] show how these counter-
ing effects can lead to a “magic slope”, for which
the adatom current is zero. This was then used to
explain the slope selection observed experimentally
[17], however, again, later experimental results
indicate no such “magic slope” [7,8,18,19], and the
countering current mechanisms are not necessary
in order to describe the surface shape evolution. It
remains an unresolved issue, therefore, whether
the stable, downhill adatom current term is caused
by a negative ES barrier or the combined effect of
a positive barrier along with a stronger counter-
acting, stabilizing effect.

The nonlinear term in KPZ is associated with
growth along the outward normal, as in chemical
vapor deposition. In this case, which is not
applicable in MBE, A should be equal to the
growth rate F. However, the value for 4 needed to
simulate the experimental results is almost two
orders of magnitude larger than F [8]. This raises
the question as to the physical origin of the
nonlinear term in MBE growth. The KPZ
nonlinearity is non-conservative, whereas, MBE
growth is conservative with a growth rate that is
independent of the surface shape. In practice, for
the low surface slopes where KPZ is applicable,
the change in growth rate associated with the non-
linear term is very small. Although the KPZ
nonlinearity gives a good approximation to the
surface shape its physical origin is obscure in the
case of MBE growth. One would prefer to have a
model that can be derived from underlying
physical phenomena.

In addition, the KPZ description with constant
coefficients is not consistent with experiments
which show that the smoothing rate depends on
the growth rate. For example, in Fig. 1 we show
the scattered light intensity from a GaAs surface
during an interruption in growth on a randomly
textured substrate. The intensity of scattered light
is proportional to the power spectral density of the
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Fig. 1. Light scattering during growth corresponding to surface
power spectral density at 41 pm~' showing the effect of atom
deposition on the smoothing rate. The sample roughens during
a temperature ramp to remove the surface oxide at about 5 min
in the figure, which is followed by relatively fast smoothing
during a high temperature (620 °C) anneal for about 7 min, and
then slower smoothing during annealing at growth temperature
(550°C)

surface topography at a spatial frequency ¢
determined by the optical wavelength and geome-
trical factors [8]. In this case g=41 pm~!, corre-
sponding to a lateral surface length-scale of about
150 nm. For low amplitude surface textures, in the
KPZ model the surface should smooth exponen-
tially with a characteristic rate given by vg*> where
q is the spatial frequency of the surface roughness
[1]. As shown in the inset of Fig. 1, the smoothing
rate responds immediately to changes in the
growth flux; it is faster during deposition and
slower during annealing, suggesting that v is flux
dependent. This continued smoothing of the sur-
face in the absence of an atom flux indicates that
the physical mechanisms at play on the surface
favor a net downhill migration of surface adatoms,
even when the flux of atoms is turned off. This
suggests that if there are two competing mechan-
isms including a positive ES barrier that the
stabilizing mechanism that creates the downhill
flow is not associated with energetic adatoms
deposited from the vapor such as step edge
knockout or downhill funneling.

To summarize, the KPZ equation provides an
accurate description of the surface morphology
under certain restricted conditions (constant
growth rate, low surface slope and long wave-
length surface structures). In addition, the physical
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origin of the nonlinearity in KPZ is unclear in the
case of MBE growth. In the rest of this paper we
develop a new continuum model based on a few
simple physical processes that describes the surface
morphology over a broader range of conditions
than the KPZ equation and we compare this
model with experimental data.

Fig. 2. AFM images of (a) a sample quenched (fast cooled)
after 69 min of growth at 600°C and (b) a sample annealed for
15 min at growth temperature 595°C after 40 min of growth.

To illustrate the physical processes involved in
the epitaxial growth process and to motivate the
new model we compare atomic force microscope
(AFM) images of a growth surface which is fast
cooled after growth is terminated (quenched) with
one that has been annealed (see Figs. 2a and 2b).
In this figure and in Fig. 1, the As;/Ga flux ration
was 10:1. The quenched sample (a) is covered with
small islands, whereas the annealed sample (b) has
broad terraces with few islands. The small islands
must coalesce into the step edges during annealing.
The kinetic barrier to the adatom coalescence into
the step edges, causes the growth process to be
non-local in space and time. This means that the
growth rate at one location will be affected by the
morphology at another location in contrast to
KPZ, for which the growth rate only depends on
the local surface slope and curvature. This is a
problem not only for KPZ but also for alternative
growth equations such as the MBE Equation [1].
Physically, a high density of steps at one location
that absorb adatoms will affect the adatom density
and hence the growth rate at another nearby
location.

3. Coupled growth equation model

The growth phenomena discussed above can be
explained in a natural way if we extend the
growth model to include the adatom dynamics
explicitly with two 1D coupled growth equations
(CGE) [21]:

dm+V-j=F —a;'0,(a;'h), (la)

d/(ay'h) = pDn* + BDnS — ajkS. (1b)

Eq. (1a) is a continuity equation for the adatom
density # (in units of nm~") with source and sink
terms, while Eq. (1a) describes the time depen-
dence of the surface height 4 (in nm), which
depends on the dimer nucleation rate and the net
adatom attachment rate at steps. The constants are
defined as follows: F is the deposition rate from
the vapor (in nm~! s7!), D the adatom diffusion
coefficient (in nm?s~!), S the density of steps (in
nm™'), k the rate of thermal detachment of atoms
from step edges into the adatom phase (in s™'),
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and f is the incorporation coefficient for an
adatom to a step edge or to another adatom.
The lattice parameters are a; (in-plane) and a; in
the growth direction. An adatom is defined as a
diffusing unit on the surface, which could be a Ga
atom or a Ga-As complex. Egs. (1a) and (1b) are
continuum equations in the sense that the vari-
ables, namely the surface height, adatom density
and step density are macroscopic quantities
averaged over a number of atomic units. In Eq.
(1b), any adatom that attaches to a step edge is
assumed to have incorporated into the film. We
also define:

i= —D(aj_lCth + Vn), (2a)

S =\/S%+ (a7'Vh), (2b)

where in Eq. (2a), j is the surface current of
adatoms and ( is a proportionality constant which
describes the net directional drift of adatoms. A
positive value for { gives a net downhill adatom
current, consistent with the surface smoothing that
is observed experimentally for GaAs (001)
[8,18,19]. At this point the form for the surface
current in Eq. (2a) can be regarded as a hypoth-
esis, motivated by the success of the second order
linear term in the KPZ equation in fitting the
GaAs surface morphology in the limit of low
surface slopes [7]. The second term in Eq. (2a)
represents adatom diffusion.

Eq. (2b), is a physically plausible expression for
the dependence of the rms step density on the
surface slope. In this equation, Sy is the random
step density on a flat surface due to growth related
phenomena such as island nucleation and ther-
mally induced disorder. This step density will
depend on temperature, growth rate, arsenic flux
and on time, if the growth rate is not constant (see
Fig. 2a and b) [22]. If the random step density is
not too large, one can define a random local slope
associated with the local configuration of the steps.
In the presence of a macroscopic topography the
random local slope associated with Sy adds to the
macroscopic slope Vh. If the two slopes are
uncorrelated then the rms step density is given by
Eq. (2b). In general there may be correlations
between Sy and VhA. Nevertheless, one might

expect this expression for the step density to be
relatively insensitive to correlations, as it has the
correct limiting behavior for large and small
surface slopes. Therefore one could also regard
Eq. (2b) as a convenient interpolation formula.

In the limit that VA<.S, there will be numerous
up and down steps (i.e. small islands) between
successive net upward (or net downward) steps
associated with the macroscopic surface slope. The
net downward flux associated with the step edge
ES barriers or other mechanisms which drive the
flow of adatoms downhill will depend on the
macroscopic average surface slope. For example, a
monolayer island located on a terrace on a vicinal
surface, will not cause a net macroscopic downhill
flux of adatoms, even in the presence of ES
barriers as the down flow on one side of the island
will balance the down flow in the opposite
direction on the other side. For this reason the
adatom current in Eq. (2a) is proportional to the
macroscopic surface slope V.

The simple picture of a surface consisting of flat
terraces separated by atomic steps, can be expected
to provide a good description of the surface as
long as the surface slope does not reach the next
low index crystal planes, namely (1 10) and (111).
These planes are 45° and 54.7° from the surface
normal, and are beyond the range of surface slopes
that we have explored experimentally (<30°).

For low amplitudes and long wavelength
(Vh<S)), the adatom density will be nearly
constant as a function of position and time, and
approximately equal to ny = (F + xSo)/fDSy. In
this case, Egs. (1a) and (1b) reduce to,

oh ([(F
o p (So
This reproduces the linear part of the KPZ
equation and shows explicitly the dependence of
the linear smoothing coefficient v on the deposition
rate and the downhill drift parameter (. In
addition, it shows that in the absence of growth
(F = 0) the linear smoothing term is independent
of the background step density Sy. This agrees
with the light scattering data in Fig. 1, which
shows that the smoothing rate is relatively
constant during a growth interruption even though
the AFM images in Fig. 2 indicate that the step

+ K) V’h+F. (3)
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density drops dramatically during annealing. Ex-
tending Eq. (3) to higher order, one finds non-
linear terms with higher order spatial derivatives.
We speculate that the higher order nonlinear terms
can be approximated by the KPZ nonlinearity
over a limited spatial frequency range if the surface
topography is not too large.

4. Patterned surfaces: film thickness evolution

Growth on substrates with larger amplitude
surface slopes, up to ~ 30°, show complex surface
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Fig. 3. Film thickness dependence: (a) AFM scan lines for
regrowth on 100 nm deep gratings oriented perpendicular to the
[110] direction (substrate temperature was 580°C, F = IML/s
and the As,/Ga pressure was 3:1); (b) Scan lines from CGE
calculation; (¢) Scan lines from 2D kMC simulation of 10 nm
high grating structure, where one At equals 5.6 ML of growth.
All offsets arbitrary.

shapes before evolving into parabolic mounds, as
shown in Fig. 3(a). At intermediate times, the
valleys are V-shaped with concave rather than
convex sidewalls and distinct shoulders near the
top of the sidewalls. Note the absence of (001)
facets which are predicted theoretically for anneal-
ing below the roughening temperature in the
absence of deposition [4]. Egs. (1) and (2) an be
solved in seconds with a finite difference scheme
and a coupled differential-algebraic system solver,
and a 1D solution is shown in Fig. 3(b) with
parameters adjusted to match the experimental
data in Fig. 3(a) (see Table. 1 for parameters). The
agreement with the experimental surface shapes is
striking. In particular, the model reproduces the
inverted ’Gothic window’’ shape of the valley for
the 600 nm growth and the KPZ-like cusps in the
2600 nm growth where the grating amplitude has
reduced significantly.

A continuum model cannot include the micro-
scopic details of the atomic scale phenomena, such
as the geometrical configuration of the step edges.
We therefore compare the continuum model
described by Egs. (1) and (2) with a kinetic Monte
Carlo (kMC) simulation, which includes the same
physical processes that are included in the Egs. (1).
We use a 2D, cubic grid, one-component, re-
stricted solid-on-solid (SOS) model, with nearest-
neighbor interaction. Each atom bonds to the
surface with an activation energy FE,q = Eqp +
mE),, where m is the number of lateral neighbors
[23]. It should be noted that in these simulations, a
negative ES barrier was used, as described in
Section 2. The kMC simulations produce a
random step distribution automatically due to
the statistical nature of the model. In kMC, the

Table 1
Parameter table for CGE calculations.
Figure F T D/10° K So B/107* ¢/1073
(ML/s) 0 (nm?/s) (1/s) (1/nm)

3(b) (L[110]) 1.0 580 2.5 43 0.07 3.3 1.4

4 (b) (L1 T()]) 0.8 420 0.04 0.004 0.49 6.6 1.5
500 0.4 0.2 0.38 1.6 1.4
550 1.3 1.4 0.19 0.4 1.2
610 4.6 12 0.03 13 1.1
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binding energy for an atom at a step edge depends
on how many neighbors it has (~ mE},), whereas
in the CGE continuum model a single average
value is used for the step edge binding energy. SOS
simulations of MBE growth by kMC are limited
by available computing power to small scale
structures, and become intractable for realistic,
high temperature growth scenarios where 2D
systems have sides up to microns and growth
times on the order of hours. In Fig. 3(c), we show a
kMC simulation for a surface grating that is
somewhat smaller than the experimental struc-
tures. The simulated grating profiles in Fig. 3(c)
were obtained by projecting 2D kMC simulations
onto a line at each time point by taking the
average elevation perpendicular to the scan line. In
this simulation, Eg, = 1.25¢eV, Ej; = 0.35¢eV and
an ES step-edge barrier of Egs = —0.05eV was
used for the downhill drift mechanism. The
agreement with the experimental shapes is excel-
lent, reproducing all of the main features, except
they are on a smaller size scale. The substrate and
lateral binding energies are similar to values
reported earlier in the interpretation of RHEED
data [24,25] and compatible with the fitting
parameters found in the continuum model. It is
plausible that similar shapes could be obtained for
the larger size scales relevant to the experiments by
scaling the parameters appropriately. In the
case of the CGE model(Egs. (1) and (2)) we
find that the parameters can indeed be scaled to
yield similar surface shapes at different length
scales [26].

5. Patterned surfaces: temperature evolution

In Fig. 4(a), we show the dependence of the
surface topography on growth temperature, for a
fixed layer thickness together with Fig. 4(b) the
simulated surface topography using Eqns. (1) and
(2) parameters as outlined in Table. 1. The
experimental data is obtained from growths on
100 nm deep gratings oriented perpendicular to
[110]. This is the faster diffusion direction in this
material system [8], and depends on the As,/Ga
ratio during growth, which was equal to three for
the data shown in Figs. 3 and 4. This observation
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Fig. 4. Growth temperature dependence: (a) AFM scan lines
for regrowth on 100 nm deep gratings oriented perpendicular to
the [110] direction; (b) CGE calculation. The grating pitch is
5 um. All growths are 1 h at 0.8 ML/s and the As,/Ga pressure
was 3:1. All offsets arbitrary.

is consistent with the values used for the downbhill
drift parameter in our calculations, where the best
fits were obtained using a larger { when the
gratings were oriented perpendicular to [1 1 0] (Fig.
4(b)) than for gratings perpendicular to the [110]
direction (Fig. 3(b)). The diffusion constant D,
however, was considered isotropic in all calcula-
tions in this paper. There is some uncontrolled
variation in the pitch and depth of the gratings in
the experimental data in Fig. 4(a). Nevertheless,
the CGE model reproduces the main features in
the temperature dependent data, namely the small
secondary mound in the valley at 420°C and
500°C, the KPZ-like cusp at 550°C and the
inverse Gothic window shape for the valleys at
610°C. The shoulders at the edges of the ridges at
610 °C are also reproduced by the model, although
they are not as sharp as in the experimental data.

The parameters used in these calculations are
based on the same energies used in the kMC
simulations in Fig. 3(c). The diffusion constant is
related to the substrate binding energy through the
expression D = (2kT /h)exp(—Eqb/kT). The step
edge detachment rate is calculated from x =
Dexp(—mE), /kT), where 1 is an average number
of neighbors for atoms at a step edge which we set
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equal to 2.5. The declining value of S; with
temperature is reasonable under growth conditions;
one might also expect { to decrease weakly with
temperature. Satisfactory fits to the data were also
obtained with a larger activation energy for D
(1.8 eV rather than 1.25 eV) together with a smaller
prefactor and somewhat different (yet still physi-
cally reasonable) temperature dependences for the
other parameters. Experimental and theoretical
work suggests that the activation energy for D is
in the 1.5-2.0 eV range [24,25,27,28].

In a recent publication, Kan et al. [29] find that
the peak-to-valley amplitude of patterned GaAs
surfaces increases during the initial stages of
regrowth before declining. This effect is also present
in the CGE model. For example in Fig. 3, both the
data (panel a) and the CGE calculations (panel b)
show that the surface peak-to-peak amplitude has
increased after 200 and 600 nm film growth, but has
decreased again at longer growth times. Fig. 4
shows the same effect, where both the data (panel a)
and the CGE calculations (panel b) show an
increase in the surface peak-to-valley amplitude. It
is interesting to note that a stable model like the one
described in this paper, with a net downhill drift of
adatoms still can create a seeming instability like
the peak-to-valley amplitude overshoot.

6. Conclusions

We have shown that the complex surface shapes
which develop during epitaxial regrowth on
patterned (00 1) GaAs substrates, can be explained
by the dynamics of the deposited adatoms,
including step edge attachment and detachment,
adatom diffusion, and a stable, downhill adatom
drift. Although we attribute the downbhill drift to a
negative ES barrier we cannot rule out the
possibility that this effect is caused by some other
mechanism. This analysis is specific to GaAs, but
the concepts are generic and should be applicable
to other systems.
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