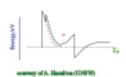
# **Theoretical Physics**


# Michele Governale and Ulrich Zuelicke

### Research interests

#### Functional materials

#### Quantum wells, wires and dots: Nano-electronic devices

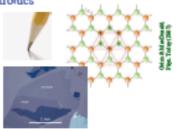

function based on quantum effects & discreetness of charge













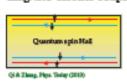


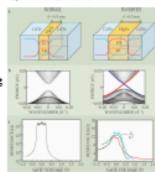

#### Graphene: Carbon-based electronics

- single layer of graphite (ie, sheet of pencil lead!)
- atomically thin but still conducts electric current
- transparent conductor
- robust mechanical and thermal properties



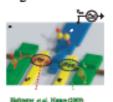
MoS<sub>2</sub> & similar layered materials: Ultra-thin semiconductors

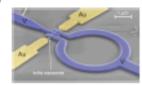

- · versatile for transistor applications and optoelectronic devices
- testbed for entirely new electronics paradiems (spintronics, valleytronics)





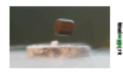

### Topological insulators


- most exotic materials
- insulating in bulk but conducts current at edge
- magneto-electric coupling






#### Hybrid normal-superconducting nanostructures


- macroscopic quantum effects
- entangled-electron sources

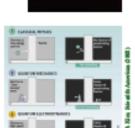




## Novel phases & complex states of matter

- magnetism & superconductivity
- phase transitions
- emergent degrees of freedom




#### Particle Physics on a chip

- emergent physical objects (quasiparticles) realised in materials
- greater variety than elementary particles in our universe!

#### Massless electrons in graphene

- · move at constant speed  $v \approx 10^6 \text{ m s}^{-1}$
- penetrate all internal barriers!





#### Emergence of Majorana quasi-particles

- hypothesised matter particles (fermions) that are their own antiparticles
- localised types can emerge in nano-wires in contact with superconductors in the presence of magnetic fields
  - created from breaking up ordinary electrons







# Research capabilities

- electronic-device modeline
- theories of functional nanostructures
- study of non-equilibrium phenomena
- advanced mathematical/field-theoretical methods
- analysis and modeling of complex systems: universality & emergence

# Applications

Nano-electronics & Spintronics





Quantum information technologies