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A unified formulation of reflection theory is given in a form which may be applied to neutron or electromagnetic wave 
reflection. Some exact results are given, valid for an arbitrary stratification, and then approximations based on these are 
developed, and compared. Matrix and numerical methods of calculating reltectivities are also discussed. Finally, an old 
problem, concerning the existence of a thin layer of water on ice below 0°C, is suggested as one which may be resolved by 
means of neutron reflection studies. 

I. Introduction 

All reflection, whe the r  of  particle,  e lec t romagnet ic  or  acoustic waves,  is the result  of  the construc-  
tive in ter ference  of  many  scat tered waves originating f rom scat terers  in a p lanar  stratified med ium.  For  
regular  arrays (grat ings or  lattices), specular  reflection can be viewed as a special case o f  diffraction:  it 
is the ze ro th  o rder  diffract ion peak ,  and the only one  when the wavelength  is grea ter  than twice the 
lattice spacing. W h e n  the latter condi t ion  holds,  an assembly of  scat terers  can be rep laced  by a med ium 
charac te r ized  by an effective potent ia l  V, or  dielectric funct ion e, or  refractive index n. 

For  planar-strat if ied media  whose  proper t ies  depend  spatially only on the depth  z, reflection 
proper t ies  follow (in principle,  at least) f rom the knowledge  of  V(z )  or  e(z )  or n(z) .  Fermi  and others  
[1-5]  demons t r a t e  that  for  neu t rons  with scattering length b off  ( bound )  scat terers  occupying  vo lume  v 
per  scat terer ,  the effective potent ia l  or  refractive index are given by 

V =  4axb/v , n 2 = 1 - h 2 b / I r .  (1) 

The  one - to -one  co r re spondence  be tween  reflection of  e lec t romagnet ic  s-waves  and particle waves is 
well k n o w n  [5, 6]. For  the s tudy of  reflection proper t ies  it is convenient  to deal in terms of  an effective 
dielectric funct ion e = n 2, which f rom (1) is 

e =  1 - A Z / L  2 , L Z ~ w v / b .  (2) 

The  dielectric funct ion for  e lec t romagnet ic  waves in an e lectron gas or  plasma,  

2 2 
e = l - w e / W  , (3) 

has the same fo rm as (2),  with L 2 =  rrv/r  e, where  v is the vo lume per  e lec t ron and r e = ee/mc 2 
2.818 x 10 -15 m is the classical e lect ron radius. It is interest ing that  the formula  for  L is so similar in 

the two cases, with b and r e bo th  of  nuclear  size. The  same fo rm for  e holds for  X-rays  away f rom 
a tomic  resonance  frequencies .  A l though  the fo rm taken  by the effective dielectric funct ion is the same,  
the vo lume per  scat terer  can be very  different.  We note  also that  L can be imaginary  for  neut rons ,  for  
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scatterers with a negative scattering length, as for example protons,  or lithium 7. (Reflection 
exper iments  are however  always done on media with positive b a n d  L 2, since these media  have e < 1 
and thus can reflect strongly.) The magnitudes of v and L are shown in table 1 for some typical cases. 

At  a boundary  between two media with dielectric functions e I and e 2, Snell's law reads 

61 COS201 = E" 2 COS202 , (4) 

where 01 and 02 are the (glancing) angles of incidence and refraction. For incidence f rom the vacuum, 
where e I = 1, and with e 2 = 1 - A2/L~, reflection is total (a real 02 ceases to exist) for 

sin 01 <~ sin 0 c = ~ / L  2 (5) 

Thus radio waves with A/sin 01 > L:  will reflect back down to earth from the ionosphere,  or sodium will 
strongly reflect electromagnetic  waves at normal  incidence for A > 2 0 9 0 A .  (The reflection is not 
complete  in ei ther of these examples;  absorption has been omit ted from (3)). For thermal  neutrons the 
wavelengths are typically much shorter than the length L, and very small glancing angles of incidence 
are used in order  to work near  enough to the equality in (5) to obtain sufficient reflected flux. 

In the remainder  of this paper  we will concentrate on neutron reflection, and will present  some 
general results of reflection theory in the special context of particle reflection at near  grazing incidence. 
We consider a general stratification w h e r e  L 2 ( z )  = " t ry ( z ) /b ( z )  = ~r/p(z) varies with depth z (p  = b/v is 
the scattering length density). The resulting effective dielectric function is 

~(Z) ~ I -- ~ 2 / L 2 ( z ) ~  1 --  ~2p(Z) / ' r l "  , ( 6 )  

and for particle or electromagnetic  s-waves the reflection problem is characterized by a one-dimensional  
wave equat ion (for proofs see for example  sections 1-1 and 1-3 of ref. [5]), 

d2qj + q2(z)qJ = 0 (7) 
d z  2 

where the full probabil i ty ampli tude for plane wave propagat ion in the zx plane is ~ ( z , x ) =  
th(z) exp( iKx) ,  and K and q are the components  of the propagat ion vector  along and perpendicular  to 
the stratification. K is an invariant,  obtained mathematical ly as a separation of variables constant,  and 
its constancy implies Snell 's law (4), since K = X/el (2"n/A) cos 01 = X/ez(2~r/A ) cos 02, where e 1 and e 2 are 
the limiting values of e(z) above the inhomogeneity,  which typically is confined to some thickness Az. 
We normally have e 1 = 1 (the neutrons are incident f rom a vacuum or a good approximation to it); in 
that case the perpendicular  component  of the propagat ion vector is given by 

2 2 

q 2 ( z )  = ~ - /  [ e ( Z )  --  COS201] = \ A /  [sin201 - -  A 2 / L 2 ( z ) ]  , ( 8 )  

Table  1 

wave  type m e d i u m  volume per  scat terer  (,~3) L (,~) 

the rmal  neu t rons  n iobium metal  18.0 981 
X-rays  water  3.0 580 
light sod ium metal  37.7 2090 
radio waves ionosphere  -- 10 ~ '~ - 100 m 
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or by 

q2(z) = q~ - 4'rrb(z)/v(z) = q~ - 4"rro(z ) , (9) 

with ql = (27r/A) sin 01. 
Total reflection, Irl = 1, occurs when q2 is imaginary, which from (8) or (5) is when sin 01 ~< A l L  2 

(this result holds for all non-absorbing stratifications which are bounded above and below by a uniform 
media characterized by E: 1 : 1 and e 2, as we shall see shortly). From (8) we have q2 = (2"rr/A) 
(e 2 - c0s201) 1/2, imaginary when 0i ~< 0 c = arccos X/e 2 = arcsin(A/L2) or A 1> A c = L 2 sin 01. When b > 0, 
so 0 c exists, we can write 

2'7T 2 qZ(z)=(T~-2) I sin20-------~l ( L2 ] 2 ] = 4 ~ [ p 2  sin201 p(z)] 
sin20c \ L ( z )  / / sin20c ' 

(10) 

Thus for fixed profile p(z), the wave equation is the same for same values of sin 01/sin 0c = ql/qc,  where 
qc = (27r/A) sin 0 c = 2~r/L 2. 

The limiting forms of 0 define the reflection and transmission amplitudes r and t: 

e iqlz q- r e - iqlz  ~-- ~---~ t e iq2z . (11) 

For unit incident flux, the reflected flux is R = ]r[ 2. Conservation of particles (or of electromagnetic 
energy) in the absence of absorption reads R + T =  1, where T =  (q2/ql ) l t l  2 (see section 2-1 of ref. [5]. 

An important special case is that of reflection at a step (a sharp interface between media 1 and 2). 
Taking the boundary at z = 0, and using the continuity of 4, and dqJ/dz  at the interface, gives 

ql - q2 2ql 
- - -  , t ~ t ~ p - - -  . ( 1 2 )  rs tep q l  + q2  q l  + q2  

The step reflection amplitude can be rewritten in terms of 0c: 

sin 01 - [s in20x - s in20c]  1/2 

rsteP = sin 01 + [sin201 - sin20c] t/2 " (13) 

There is a (01 - 0 c )  1/2 singularity at the critical angle, corresponding to the right-angle turn which q2 
takes in the complex plane on passing through zero, and Rstep = Irstepl 2 decreases rapidly from unity as 
01 increases beyond 0c: at s i n 0 1 = 2 s i n 0  c the reflectivity is ( 2 - X / 3 ) 4 ~ 5 × 1 0  -3, while at normal 
incidence g s t e p  = ( 1  - COS 0 c ) / ( 1  + COS 0c)  ~ ( A / 2 L 2 )  4, usually an undetectably small value for neutrons. 
(The approximate equality is valid when A ~ L2; for A/> L 2 the reflection is total at all angles.) 

2 .  S o m e  e x a c t  r e s u l t s  f o r  a g e n e r a l  s t r a t i f i c a t i o n  

Two of the properties noted above for the step profile, namely that reflection is total for 
sin 01 < h /Lz ,  and that the fall-off from total reflection occurs with a square-root singularity in 01 - 0 c, 
are common to all non-absorbing stratifications. We will consider a non-uniform bounded layer which 
may have discontinuities in p(z ) ,  as shown in fig. 1. 

For a given known variation of e(z)  in the interval [a, b], the second order differential equation (7) 
has two independent solutions, say F(z)  and G(z) .  Thus 4,(z) may be written as 
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Fig. 1. Scattering length density profile, p(z) = b(z)/v(z), for neutron reflection from a non-uniform layer. The variation between 
z = a and z = b may take arbitrary form. 

f iqlz iqlz e + r e  , z < a ,  

qJ(z) = J a F ( z )  + / 3 G ( z ) ,  a < z < b ,  (14) 
~t e iq2z , Z > b . 

By match ing  ~0 and dqJ /dz  at z = a and b, the four  u n k n o w n  constants  r, a , /3 ,  t may  be solved for. The  
result  for  r is (cf. eq. (2.25) of  ref. [5] 

r = e 2iq'" q l q 2 ( F '  G )  + i q l ( F ,  G ' )  + iq2(F ' ,  G)  - (F ' ,  G ' )  
q lq2 (F ,  G )  + i q , ( F ,  G ' )  - iq2(F ' ,  G)  + (F ' ,  G ' )  ' 

(15) 

where  

(F,  G )  =- FaG b - G a F  b , (F,  G ' )  ~ FaG'  b - G a F '  b , etc. (16) 

H e r e  F a stands for  F ( z )  evaluated  at z = a, F" for  the derivative of  F evalua ted  at z = a, and so on. 
W h e n  e is d iscont inuous  at z = a or  b, the values and derivatives are to be unde r s tood  as limits z--~ a + 
and z ~ b . 

In the absence  o f  absorp t ion  F and G may  be taken to be real, since they are solutions of  a l inear 
differential  equa t ion  with real coefficients. For  sin 01 < A / L  2, q2 is imaginary  and r takes the fo rm 
e2 iq ' a ( - f  + i g ) / ( f  + ig), with real f and g. Thus  Ir] = 1 and reflection is total.  

A t  0 c = a rcs in (A/L2) ,  q2 is zero.  For  01 just a bit grea ter  than 0 c (or equivalently,  for  A just a bit 
shor te r  than Ac = L2 sin 01), q2 is small, and expansion of  (15) in powers  of  q2 gives the reflectance 
decreas ing  f rom unity as 

R = 1 - 4 q l q 2 W 2  
q~(F,  G ' )  2 + (F ' ,  G ' )  2 + O ( q ~ ) ,  (17) 

where  the Wronsk ian  W=- F G '  - G F '  is i ndependen t  of  z, and we have used the identi ty 

(F,  G ) ( F ' ,  G ' )  - (F,  G ' ) ( F ' ,  G )  = W a W  b = W 2 . (18) 

E q u a t i o n  (17) demons t ra t e s  that  the (01 - 0c )  1/2 singularity is universal for reflectivity a s  01 tends to 0 c 
f rom above,  since 
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2"gr q2 = ~ [sin201 - sin2Oc] 1/2--+ 2rr (sin 20c)]/e(01 - 0 c )  1 /2  (19) 
A 

Equivalently, in terms of A c = L 2 sin 0 l, we have from (8) that 

2"rr /~2]1/2 2"rr [ 2 \1/2 A) 1/2 
q2 = ~ [A~-  --+ L--- 7 ~ }  (A c -  , (20) 

so there is a ()to - )01/2 singularity in the wavelength variation as )t tends to )t~ = L 2 sin 01 from below. 
The universality shown in (17) is a rigorous result for profiles of finite range (see ref. [24] for the 

case of profiles with z -~" tail) but its range of validity may be very small in some special cases, as we 
shall see in section 5. Surface roughness or a spread of angles of incidence or of wavelengths will in any 
case smooth out the singularity near 0 c or A~ (see for example fig. 3 of ref. [7] or fig. 2 of ref. [19]). 

At  grazing incidence (0]--+0), r - -+-1 ,  as can be seen directly from (15). Thus all profiles reflect 
perfectly in the limit of grazing incidence (it is not necessary for e 2 to be less than e I for this to hold). 
On the other hand, as e2--+ el, the reflection goes to zero: there has to be a change in the medium for 
reflection to occur. Since Ae is small for neutrons, reflection experiments are forced to operate near 
grazing incidence. Some difficulty is to be expected in theory which tries to deal with phenomena in a 
region of conflicting limits: here with R--+ 1 at grazing incidence, R--+0 as Ae--+0. 

Among the many other exact and general results of reflection theory [5], we will omit all but two: 
the first is the exact expression (5.83) of ref. [5], 

f dq/dz r = - dz ~ (e 2i6 - r:(z) e-2ie') , (21) 
- - o o  

where r(z) is the reflection amplitude of a profile truncated at z (profile truncation is illustrated in fig. 
5-1 of ref. [5]), and 4~(z) is the accumulated phase at z: 

4~(z) = f d~'q(~'). (22) 

The second is the theorem that monotonic profiles reflect less than the step profile (proved in section 
5-4 of ref. [5]), illustrated in fig. 2. 

2 3 sine/sinec 
1 i i i 

si l icon 

~ ~ ~  water ] 

I . . . . . .  ' 10"2 ~1000~ --" 

10-4 

Fig. 2. Reflectivity of a layer of H 2 0  (P = 0.056 x 10 5 ,~ 2) on Si (P = 0.215 x 10 -5 ~ - 2 ) ,  compared to the reflection from bare 
Si, using (24) and (11). The water layer is 1000 .~ thick. 
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3. Approximations based on the exact results 

The expression (15) is exact, but usually we do not know the wave functions F(z)  and G(z) .  When 
we do, as for the exponential ,  Rayleigh, or linear profiles (Sections 2-5 and 5-2 of ref. [5]), direct 
substitution in (15) gives the exact reflection amplitude. The simplest non-trivial case is that of  a 
uniform profile, in which q(z )  is a constant q, and F and G may be taken as cos qz  and sin qz.  This 
gives the familiar results (e.g. ref. [5], eqs. (2.52), (2.58)) 

r = e 2 iq la  rl + r2 e 2 i q  a z  = e 2 iq ' a  q(q l  - q2)  c + i (q 2 - q l q 2 )  S 

1 +  rlr2 e2'qaz q ( q l - + q 2 ) c - - i ( q 2 + q l q 2 ) s  ' 
(23) 

where Az = b - a, r 1 = (ql  - q ) / ( q l  + q) and r 2 = (q  - q 2 ) / ( q  + q2) are the step or Fresnel reflection 
ampli tudes at the boundaries  of the uniform layer, c = cos q Az and s = sin q Az. When q~, q and q2 are 
all real,  the reflectivity is given by 

2 r I + 2 r l r  2 cos 2q Az + (r2) 2 
R = Irl 2 = 1 + 2rlr  2 cos2q  Az  + (rlr2) 2 " 

(24) 

We seek approximat ions  that remain exact in the special case of constant q, but allow for variation 
in q(z )  as in the profile of fig. 1. There  is a sequence of such approximations,  based on L iouv i l l e -Green  
waveforms (see section 6-2 of ref. [5]; in the physics li terature these are usually referred to as W K B  or 
J W K B  wave functions). The zeroth order  waveforms are cos ~b(z) and sin ~b(z). Using these we find 

(F, G)  = sin A~b , (F, G ' )  = qb COS A~b , 

(F ' ,  G)  = - q ,  cos A~b, (F ' ,  G ' )  = qaqb sin At/,, 
(25) 

where  A¢ is the total phase increment  across the stratification: 

b 

Aqb = ok(b) - ok(a) = f dz  q(z)  . 
a 

(26) 

The  values (25) substituted into (15) give, writing c for cos A~b and s for sin Ark, 

r0 = e 2 i q , a  (q lqb  -- q2q~) c + i(q~qb -- qlq2) s ~ e 2 i q l a N o  
(q lqb  + q2qa) c -- i (q~qb + qlq2) s Do"  

(27) 

When  q~ = qb, (27) reduces to the uniform layer reflection ampli tude (23), and when q2 = 0 (at the 
critical angle or critical wavelength),  (27) correctly has unit modulus. Note  that the ex t rema of 
R 0 = Ir012 occur when A~b is a multiple of ½w. 

The  next approximat ion for the wave functions, namely 

= cos ~b(z), G(z )  = sin ~b(z), (28) 

( the square roots of  qa and qb are inserted to give closer correspondence with our zeroth results) give 
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(F, G) = sin Ark, (F, G ' )  = qb[COS A~b - lyb sin A4)], 

(F, G ' )  = qaqb[sin Ach + ½(Yb -- Y,) COS A~b + l yay b sin A~b], 

(F',  G) = -q~[cos A~b + ½y, sin A~b], 
(29) 

where y~ and 7b are the values at z = a + and b-  of the dimensionless function extensively used in 
chapter 6 of ref. [5], 

d q / d z  2~r d ( b )  4"rr 2 dL (30) 
7 = qZ - q3 dz - ( q L )  3 dz " 

The values (29) substituted into (15) give the first order approximation to the reflection amplitude, 

r l  = e 2iqla N°  q- N1 (31) 
D 0 + D 1 ' 

where N O and D 0 are defined in (27), and 

i 
N, = --½(q,qbYb + q2qaY~) s + -~ qaqb[(Yb -- Ya) c + ½Y~ToS] ' 

i 
DI = --½(q,qbYb -- q2qaYa) s -- -~ qaqb[(Yb -- Ya) c + ½yaYbS] " 

(32) 

Equation (31), like (27), gives the correct result for a uniform layer, and for an arbitrary layer it gives 
unit reflectivity at the critical angle or critical wavelength (when q2 = 0). 

According to the formulae for r 0 and r l, reflection is mainly the result of discontinuities at z = a and 
b, and of interference between the reflections from these discontinuities. Discontinuities in slope also 
contribute to q ,  while a gradual variation of the medium enters the formulae only through the phase 
increment A~b. 

Another  approximation scheme uses the exact relation (21) as starting point. If any truncation of the 
stratification can be expected to reflect weakly, then the term containing r2(z) in the integrand may be 
dropped. What  results is called the Rayleigh, or weak reflection approximation [5[ 

f d q / d z  e2i6 r R = - dz ~ . (33) 

This works extremely well for smooth profiles which reflect weakly (see for example figs. 5-4 and 6-3 of 
ref. [5]). Further simplifications are possible, though the justification for these is mostly mathematical 
convenience: we can replace 2q(z) in the integrand by q~ + q2 (or 2ql, or 2q2 ) and 2tk(z) by (ql + q2) z. 
Then the modified Rayleigh approximation gives the reflection amplitude as a Fourier transform of 
d q / d z :  

1 f d z  dq ei(ql+q2)z 
r ~ -  ql + q2 _~ -~Z 

(34) 

(cf. eq. (1.109) and the related references and discussion in ref. [5]). Equation (34) has the virtues of 
simplicity, symmetry, and of giving the correct reflection amplitude for a step profile (for which 
d q / d z  = (qz - q l ) 6 ( z )  if the step is at the z = 0 plane, giving r R = (q l  - qz ) / (q~  + q2) -= rstep)" A slight 
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modification of (34) is more convenient for neutron reflection. From q2(z)= q ~ -  4~rb/v, dq/dz  = 
- (2w/q)(dp/dz)  where p = b/v is the scattering length density. If we replace q(z) by 1/2(q~ + q2) 
again, the resulting approximation is 

4~ f dz dp ei(ql+q2)z 
r ~ -  (q, + q2)2 d z  " (35) 

This form can be modified to eq. (2.23) reported by Penfold and Thomas [7] and credited to Crowley 
[8], if ql + q2 is replaced by 2q~ =-- K (hK is the momentum transfer in the reflection process): 

4-rr j dp i,z (36) 
rc - 2 dz dzz e 

K 

How well do these various approximations work? We have already mentioned the special case of a 
step profile, for which (34) gives the correct answer, as do (27) and (31). For the uniform layer (or 
arbitrary thickness) only (27) and (31) give the correct answer. More important is the performance of 
these formulae when faced with a discontinuous and non-uniform profile, such as shown in fig. 1. We 
will compare (27), (31) and (36), using a linear variation in p = b/v. Then q2 = q~ _ 4"rrb/v is also linear 
in z, and the wave equation (6) is exactly solvable in terms of Airy functions [5]: the functions F and G 
in the formula (15) are given by F(z) = A i ( - i ) ,  G(z) = B i ( - i ) ,  where 

( l AZ )2/3 2 2/3 2 
if(Z)= q2(z)--= q (Z), (37) 

with Ap = Pb - Pa being the change in p = b/v over the extent Az of the profile. 
For the approximate expressions (27) and (31) we need A~b, the increment in phase over the profile 

from z = a t o z = b = a + A z .  This is 

b 

f 1 A z  3 3 
A49= d z q ( z ) -  6"rr A O ( q a - q b ) "  

a 

(38) 

For (31) we also need Ya and Yb, which from (30) are given by 

A p  -3  A p  . 
Ya = --2"rr ~ z  qa ' Yb = --2-rr ~ZZ qb3 (39) 

Finally, for the linear profile, the expression (36) gives (note that usually p~ = 0) 

4"rr iKa{ AP (eiKaz l)/iK 1 (40) r c = --£ e Pa -- Pl + (P2  --  Pb) eiK az + ~ Z  
K 

The reflectivities R 0, R 1 and R c, obtained by squaring the modulus of (27), (32) and (36), are 
compared with the exact reflectivity in figs. 3 and 4. We see that R 0 is qualitatively correct, R 1 is 
accurate enough for most purposes, but that the simplifying approximations leading to (36) have thrown 
away too much information in the case of profiles with discontinuities. (For smooth, weakly reflecting 
profiles and away from O c the Rayleigh approximation works well, as has been noted above, and (36) 
can be obtained from r R of eq. (33) by the steps outlined.) 
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Fig. 3. Comparison of three approximate reflectivities for a 
profile with discontinuities in # at its boundaries, and a linear 
variation in p(z) in between. The scattering length densities 
are Pa = 0.641, Ph = 0.215, P2 = 0.805 (units of 10 -5/~ 2), and 
the layer thickness of 500/~. R 0, R 1 and R c are obtained 
from eqs. (27), (31) and (36). The circled points are exact 
values of R. 

sine/sl.e~ 2 
1 I i 

10  . 2  ~ - 

10-4 Re 

Fig. 4. As for fig. 3, with p, and Pb intercanged: po = 0.215, 
Pb = 0.641, P2 = 0.805 (units of 10 -5/~-~). Note that R 0 is not 
as good as fig. 3, since less of the reflection is due to the (now 
smaller) discontinuities in O at the boundaries. 

4. Matrix and numerical methods 

The  usual optical  matr ix m e t h o d  as given in B o r n  and Wolf  [9] has the unfo r tuna te  p rope r ty  of  
unnecessar i ly  having imaginary  off-diagonal  matrix e lements  (in the absence  of  absorpt ion) .  A minor  
change  of  start ing point  [5] gives real  matrix e lements ,  thus making  the requi red  matr ix mult ipl icat ion 
four  t imes faster. Fur the r  improvemen t s  are possible,  giving faster compu ta t i on  t imes for  given 
accuracy  [5, 10, 11]. We will outl ine these me thods  here.  

The  second o rde r  differential  equa t ion  (6) is equivalent  to two coupled  first o rde r  equa t ions  
(dependen t  variables qJ and q / ) :  

c l , +  q2~ = 0 ~ , _  dff  (41) 
dz  ' d z "  

W h e n  q ( z )  is approx ima ted  by a s tack o f  N uni form layers,  with value q ,  in zn < z < z , + l  (n = 
1 , . . . ,  N ) ,  we have in the n th  layer  

q/(z) = qJ. cos q . ( z  - z . )  + q : l q / s i n  q , , ( z  - z . )  , 

q / (z )  = q / c o s  q . ( z  - z . )  - q , , $ .  sin q . ( z  - z . )  . 

(42) 

(Tha t  the eqs. (41) are satisfied, and that  qJ(z,) = ~0 n, q / (zn)  = ~0" can be seen directly f rom (42).)  F r o m  
(6) or  (41) it follows that  qJ and q/  are cont inuous  at discontinuities in q2., cont inui ty  at z ,+  1 gives 

- - 1  t ° 
d / n + l = ~ b n C O S t S n + q n  ~bnSln 8 n , 

~ n + l  ~-~ ~ n  COS ~n - -  q~b. sin 6~ , 

(43) 
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where 6. = qn(z.+~ - z~) =- qn 8zn is the phase increment across the nth layer. This pair of equations is 
conveniently written in matrix form, 

( ~ 7 + 1 ) = (  cos6n q n l s i n 6 n ] { ~ 7 ]  ( ~ , ]  
q~n+l/ - q n s i n a n  cos6n ] \~b , /=-M"  qJ.]" (44) 

For the N layers we have 

///N + 1  = _ .  01, M{ qlN+1) M N M N  1 " " M "  " " M 2 M ' (  \ qJ, ]  ' (45) 

and thus the connection between the wave forms in the bounding (uniform) media is via the four matrix 
elements mij of the 2 × 2 profile matrix M, which is a product of the N layer matrices. Using the wave 
forms in (14), we find from (45) that the reflection amplitude is given by 

r = e 2iqlzl qlq2ml2 q- iqlm22 - iq2m11 + m21 
qlq2m12 + iqam22 + iq2mll - m2i 

(46) 

(z~ is equivalent to the a of the previous sections). Note the close correspondence with (15). 
Numerically it is easy to take the product of 2 × 2 matrices, but the matrices M n contain 

trigonometric functions, which are slow to evaluate. In addition, a given profile is better approximated 
by a stack of layers in which q2(z) or p(z) varies linearly, for example 

p(z) = pn + (z - zn)8pn/Sz~ in z n < z < Zn+l, (47) 

where ~Pn = Pn+l - -  Pn" It is possible to incorporate the change in p over one layer, and avoid evaluation 
of the trig functions. For example, to third order in the dimensionless parameter 6 n = qn 8zn, and using 
the linear fit (47) gives [10] 

1,  2 2 2 2 8 -  1," 2 +  2 3x~ 1 - ~ t  qn +qn+1)(~zn) a n - - ~ t q n  qn+l)(~Zn) 
I 4 )3 1 l ,  2 .  2 2 • 2 ~ 4 2 2 +qn+l ) (Sz ,  _ ~ q  ~_2qn+l)(SZn) ] --½(q~ + qn+l)~Z, + ~ ( q n  + 3q,qn+i 

(48) 

The matrix defined in (48) has determinant equal to unity plus a term of order (qn 8zn)4 The matrix 
defined in (44) has unit determinant (is unimodular). It turns out that unimodularity is necessary for 
two important conservation laws, particle conservation and reciprocity. The acoustic analogs are energy 
conservation and reciprocity; these are discussed in ref. [11], where it is shown how unimodular 
matrices may be constructed to represent any variation of q(z) or p(z) within a given layer. The second 
order unimodular matrix has the form 

Mn = 

1 - 12/2 I1 i 

l ~ j - ~  1 - J 2 / 2 1  
1-+ ~2/2 /  

(49) 

where the relation I 1 J  1 = 12 -t- J2 is guaranteed by the formalism. For linear variation in p(z) or q2(z) 
within a given layer, 
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, = ~(qn + q~+l) 8z~ , 11 = ~Z~ J1 1 2 2 

= g(2q,, + q, ,+~)(~z.)  , J2 = ~ ( q .  + 2q,,+l)(~z,,) • 2 1 2 2 2 1 2 2 2 
(50) 

All the numerical matrix methods require 6, = q, ~z n to be small for accuracy (unless q(z )  is 
constant within a given region, in which case that region can be exactly represented by a matrix of the 
form given in (44)). Of the three methods discussed here, the third order, linear fit matrix (48) seems to 
be the most efficient in computation time for given accuracy. 

5. Surface melting: is there a layer of  water on ice below O°C? 

Many surface phenomena have been successfully explored by neutron reflection. Notable examples 
are the studies in surface physical chemistry by Thomas and collaborators [7, 12-15], and studies in 
surface magnetic properties by Felcher and collaborators [16-19]. Here we outline a long-standing 
problem to which neutron reflection could well make a decisive contribution, namely that of surface 
melting or premelting: the existence of a layer of liquid on solids below their bulk melting temperature 
Tm. The question of whether surface melting exists may be asked about any solid-liquid transition, and 
surface melting is part of the larger field of the wetting [20] of solid surfaces by liquids (not necessarily 
by the melt liquid). Here we will concentrate on the premelting of ice, which has great geophysical 
importance (compaction of snow, frost heaving, rock fracture, water transport at subzero temperatures, 
and charge transfer in ice-hail collisions in the electrification of thunder clouds are some of the related 
phenomena). Dash [21] gives a recent review of surface melting; the references go back to Faraday and 
to early ideas about the slipperyness of ice and about regelation (sintering). 

Beaglehole and Nason [22] have found by ellipsometry that there is a large difference between 
premelting on the basal and the prismatic faces of ice crystals. On the basal face there appears to be 
premelting only very close of 0°C, while on the prismatic face there is a detectable layer down to about 
-7°C. At - I ° C  it is about 170/~ thick, with a rapid increase as 0°C is approached. A more recent 
ellipsometric experiment [23] verified that there is a liquid layer (with refractive index 1.33 for light of 
A = 6328 A) on both the basal and prismatic faces, but the detail of the temperature dependence was 
quite different to that of ref. [22]. The interpretation of the ellipsometric experiments is further 
complicated by the anisotropy of ice. 

If neutron reflection experiments are done, it is likely that D20  will be used. From ref. [4], 
b(HzO ) = 1.68 fm, b (D20  ) = 19.14 fm, so the relevant parameters for H20  (near 0°C) and D20  (near 
3.81°C) are as shown in table 2. Figure 5 shows the expected reflectivities for a 500 A layer of water on 
ice, and heavy water on heavy ice (the layers are assumed to be uniform). Since water is more dense 
than ice, there is a region near 0 c (or near ,~c) where q is imaginary. In this region the reflectivity is 
given by (using the second part of (23)) 

Table 2 

v (/~3) p (A -2) L (A)  

water 29.91 0.056 x 10 5 2365 
heavy water 30.08 0.636 × 10 -5 703 
ice 32.62 0.0515 × 10 -5 2470 
heavy ice a) 32.81 0.583 × 10 -5 734 

a) The volume per molecule in heavy ice has been 
estimated by proportion. 
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Fig. 5. Reflectivities due to a 500 ,~ thick layer of water on ice, shown for H20 and D20. The dashed curve is the reflectivity due 
to ice alone, in both cases. The qualitative behaviour of the scattering length density is shown exaggerated: the actual change is 
only 9%. 

R : I q l e ( q l  - q2)2 + (qlq2 + Iq le)  t2 

Iql2(ql + q2) 2 + (q,q2 - I q l 2 )  t2 ' 

where t = tanh Iql Az. This has the limiting form 

(51) 

R = 1 - 4 q l q 2  + O ( q ~ ) ,  (52) 
q~ coshZlq[ Az + Iql 2 sinh21ql Az 

in accord with the general result obtained in section 2. But we noted there that  the domain of validity of 
this (01 1/2 - 0c) or ()t c - A) ~/2 singularity can be very small. From (51) we see that (52) is valid when 
q2 ~ ql and q2 ~ Iq lZ /q ,  • (The second condition is not required when Iql Az ~ 1.) These conditions are 
satisfied when 

)2 
1 P 0 1 - 0 c ~ ½  0 1 - 0 c ~  - 1  

oc ' oc 

respectively. In the wa te r - i ce  case, the second quantity is about  4 × 10 -3, and so the range of validity of  
(52) is restricted to extremely close to 0 c or A c, unless the water  layer is so thin that I ql a z  is small when 
01 is near  0c, which amounts  to Az ~ [4"rr(p-  p2)] -1/2. This length is about  390/~ for D 2 0  and about  
1330 A for HEO. These magnitudes explain the different behaviour  near  0c of the reflectivity for D 2 0  
and H 2 0  with the same 500 A_ thickness of  liquid in each case, as shown in fig. 5. 

Al though the difference that a layer of water  makes  to the reflectivity is detectable if the layer is 
thick enough,  precise t empera ture  control,  and preparat ion of crystals of ice with a sufficiently smooth  
and large reflecting face are likely to be difficult. Premelt ing of other  solids may be easier to study by 
neutron reflection. 

References 

[1] E. Fermi, Nuclear Physics (University of Chicago Press, 1950) p. 201. 
[2] D.J. Hughes, Neutron Optics (Wiley-Interscience, New York, 1954) p. 21. 



J. Lekner / Neutron reflection theory 111 

[3] G.E. Bacon, Neutron Diffraction (Oxford University Press, Oxford, 1962) p. 116. 
[4] A.G. Klein and S.A. Werner, Rep. Prog. Phys. 46 (1983) 259. 
[5] J. Lekner, Theory of Reflection (Nijhoff/Kluwer, 1987) p. 17. 
[6] M.L. Goldberger and F. Seitz, Phys. Rev. 71 (1947) 294. 
[7] J. Penfold and R.K. Thomas, J. Phys. Cond. Mat. 2 (1990) 1369. 
[8] T.L. Crowley, D. Phil Thesis, Oxford University (1984). 
[9] M. Born and E. Wolf, Principles of Optics, 3rd Ed. (Pergamon, Oxford, 1965) Section 1.6.2. 

[10] J. Lekner and M.C. Dorf, J. Opt. Soc. Am. 4 (1987) 2092. 
[11] J. Lekner, J. Acoust. Soc. Am. 87 (1990) 2319. 
[12] J.E. Bradley, E.M. Lee, R.K. Thomas, A.J. Willatt, J. Penfold, R.C. Ward, D.P. Gregory and W. Waschkowski, Langmuir 

4 (1988) 821. 
[13] E.M. Lee, R.K. Thomas, J. Penfold and R.C. Ward, J. Phys. Chem. 93 (1989) 381. 
[14] J. Penfold, E.M. Lee and R.K. Thomas, Mol. Phys. 68 (1989) 33. 
[15] A.R. Rennie, R.J. Crawford, E.M. Lee, R.K. Thomas, T.L. Crowley, S. Roberts, M.S. Qureshi and R.W. Richards, 

Macromolecules 22 (1989) 3466. 
[16] G.P. Felcher, R.T. Kampwirth, K.E. Gray and R. Felici, Phys. Rev. Lett. 52 (1984) 1539. 
[17] S.S.P. Parkin, R. Sigsbee, R. Felici and G.P. Felcher, Appl. Phys. Lett. 48 (1986) 604. 
[18] G.P. Felcher, K.E. Gray, R.T. Kampwirth and M.B. Brodsky, Physica B 136 (1986) 59. 
[19] A. Mansour, R.O. Hilleke, G.P. Felcher, R.B. Laibowitz, P. Chaudhari and S.S.P. Parkin, Physica B 156 & 157 (1989) 867. 
[20] S. Dietrich, in: Phase Transitions and Critical Phenomena, eds. C. Domb and J. Lebowitz, Vol. 12 (1988). 
[21] J.G. Dash, Contemp. Phys. 30 (1989) 89. 
[22] D. Beaglehole and D. Nason, Surf. Sci. 96 (1980) 357. 
[23] Y. Furakawa, IVl. Yamamoto and T. Kuroda, J. Crystal Growth 82 (1987) 665. 
[24] S. Dietrich and R. Schack, Phys. Rev. Lett. 58 (1987) 140. 


