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Abstract
Electroporation in cancer therapy in which elongated micron-sized conductors 
are used to enhance an externally applied electric field is investigated. Such 
field enhancement was previously used in carbon and boron nitride nanotube 
electropermeabilization. It is envisaged that the micro-conductors would be 
injected together with therapeutic drugs into tumorous regions, and a pulsed 
or alternating external field would be applied. Amplification of this external 
electric field at the pointed ends of the elongated micro-conductors would then 
give (locally) a field sufficiently large to cause electroporation. The torque of 
the electric field on the polarized micro-conductors will tend to align them with 
the field, giving the configuration of maximum field enhancement at their ends. 
Brownian (thermal) motion will disrupt this alignment. We give an analysis of 
field enhancement, torque, and thermal motion for micro-conductors of prolate 
spheroidal shape, and estimate the range of their size for use in human tissue.

Keywords: electroporation, cancer, field enhancement

(Some figures may appear in colour only in the online journal)

1. Introduction

The purpose of this note is to analyse an electroporation (Weaver and Chimadzhev 1996, 
Gaynor and Bodger 2006, Vernier et al 2006, Pliquett et al 2007, Chen et al 2008, 2010, 
Granot et al 2009, Ivorra et al 2009, Levine and Vernier 2010) method which avoids the need 
to insert electrodes into tumour regions, as is current practice in cancer treatment (Hoffmann 
et al 1999, Mir 2000, Gothelf et al 2003, Sersa et al 2008). The required high electric fields 
are provided by external electrodes, and amplified within the patient’s body by elongated 
micro-conductors. The same idea was previously used in carbon and boron nitride nanotube 
electropermeabilization (Smythe 1950, Rojas-Chapana et al 2004, Raffa et al 2009, 2010a, 
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2010b, 2011). As we shall show, such field enhancement is readily provided: for example, the 
electric field at the tips of a prolate spheroid aligned with the field is 100 times the supplied 
external field for aspect ratio (length/width) of about 15.7.

If such a method can be made to work, it would avoid the trauma associated with the inser-
tion of electrodes into the patient, and also the involuntary muscle contractions caused by the 
application of high voltages internally.

In our numerical examples we shall assume an external field of 2 MV m−1 (for instance, 0.4 MV 
across 20 cm of a patient’s torso), reduced by a factor of about 80 inside the aqueous environ-
ment of the human body, and amplified at the sharp ends of the injected micro-conductors by the 
same factor 80 back to 2 MV m−1. [In the ideal case of perfect alignment of micro-conductors 
the example illustrated in figure 1 has field amplification by 100, but that number applies only at 
the tip of the micro-conductor, and at exact alignment.] These field magnitudes are at the lower 
end of the range used by Levine and Vernier in their electropore simulations (Levine and Vernier 
2010). In section 5, table 1 gives estimates of micro-conductor rotation times and upper and 
lower limits for the micro-conductor long axis for a wider range of field strengths.

The electric field can be applied as a pulsed or alternating voltage across the body. The 
pulse duration should be sufficiently short (or the frequency of alternating voltage sufficiently 
high) so as to not permit substantial drift of ions during one pulse or half-period. The rota-
tional response of the polar water molecules is so fast that the dielectric factor of 80 mentioned 
in the previous paragraph applies up to the gigahertz range. In section 4 we shall find that there 
is a constraint on the cumulative time of exposure: for example for 2 MV m−1 it needs to about 
10 μs or greater than to enable the micro-conductors to orient along the field direction.

We shall discuss field enhancement near elongated spheroidal conductors, their polarizability 
tensor and its relationship to energy and torque, the rotation of prolate spheroids in a viscous 
fluid, the Brownian motion which counteracts the tendency of micro-conductors to align with the 
field, and the optimum size range of the micro-conductors, in sections 2–5 respectively. Figure 1 
illustrates the schematics of the proposed electroporation method.

Figure 1. A cell with spheroidal micro-conductors around it, in an external electric 
field (horizontal in the figure), which tends to align the micro-conductors. Brownian 
motion disrupts the orientation slightly. The external field, pulsed or at high frequency, 
is amplified at the ends of the spheroids, causing pores to form in the cell membrane 
(electroporation), allowing cancer drugs to enter the cell. For the spheroid aspect ratio 
shown, the maximum amplification of the field is by a factor of 100.
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2. Field enhancement by prolate spheroids

The redistribution of charge on a conducting object placed in an external electric field changes 
the field in its neighbourhood. For example, the field close to a conducting sphere varies from 
three times the external field to zero. Elongated objects can have much larger field amplifi-
cation. A representative and calculable shape that can be made as pointed as we wish is the 
prolate spheroid (Smythe 1950, section 5.281; Morse and Feshbach 1953, p 1284). This is an 
ellipsoid with semiaxes a, a, c (c > a),
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In prolate spheroidal coordinates ξ η( , ) , related to the Cartesian coordinates by

 ξ η ξη+ = − − − = −x y c a z c a( ) ( 1) (1 ) , ( )2 2 2 2 2 2 2 2
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the conductor surface given by (1) corresponds to ξ ξ= ,0  where

 ξ ξ= − = = −−c c a e a c/ ( ) , 1 ( / )0
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1 2 (3)

(e is the eccentricity). In the longitudinal configuration, when the external electric field points 
along the long (z) axis of the spheroid, the potential outside the spheroid ξ ξ= ,0  assuming zero 
potential on the spheroid, is
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 ⎡⎣ ⎤⎦

η

ξ ξ η ξ ξ
=

− − −( )( )
E

E 1 [ arccoth 1]0
0
2

0
2 2

0 0

1
2 (5)

At either pole ξ ξ η= ± = = ±z c( , , 1) ,0  the field magnification is by the factor
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The field amplification factor increases without limit as ξ0 tends to 1 from above (c much 
larger than a), and the spheroid becomes needle-shaped. In the spherical limit (c tending to a, 
ξ0 tending to infinity), the field amplification factor tends to three. Since
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Figure 2 shows the field magnitude ratio E E/ 0 for ξ = 13 / 12,0  which corresponds to the 
semiaxis ratio =c a/ 13 / 5; in this case the maximum amplification E E/ 0 is nearly 8. Note 
the rapid decrease in the field strength with increasing distance from either pole.

The above calculation is for a spheroid in a homogeneous medium. On the suggestion of a 
Reviewer, a calculation made in the Appendix and discussed in section 6 reveals that the mem-
brane has a large effect on the electric field in its neighbourhood, despite the fact that it is very 
thin (about 5 nm) compared to the spheroid dimensions. This is because of the large contrast 
between the membrane dielectric function and that of the plasma or cytoplasm on either side.

3. The polarizability tensor and the torque

We shall use the polarizability tensor αij to calculate the torque on a prolate spheroid polarized 
by an external field. The dipole moment and energy of a conductor in an external field are 
given by (Landau and Lifshitz 1960, section 2),

 ∑ ∑ ∑α α= = −p E W E E,                      i
j

ij j

i j

ij i j
1

2 (9)

Let us suppose that the spheroid long axis is along the z-axis, and that the external field lies 
in the zx plane:

 θ θ= =E E EE ( , 0, ) (sin , 0, cos )x z0 0 0 0 (10)

The polarizability tensor in this system of coordinates is diagonal:
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Thus the longitudinal and transverse components αℓ and αt determine the system energy:

 α θ α θ= − +W E ( sin cos )t
1

2 0
2 2

ℓ
2 (12)

The torque is obtained by differentiation of the energy with respect to the angle θ between the 
spheroid long axis and the field: its magnitude is

Figure 2. Prolate spheroid, aligned with the external field (horizontal in the figure). 
The major to minor axis ratio is 13/5; the eccentricity is e = 12/13. The field strength 
contours are in geometric progression, at =E E/ , , 1, 2, 4.0

1

4

1

2



J Lekner 

6035

Phys. Med. Biol. 59 (2014) 6031

 α α θ θ∂ = −θW E ( ) sin cost0
2

ℓ (13)

The above formulae apply to a spheroid in free space; in a dielectric medium the electrostatic 
energy and torque are to be multiplied by the dielectric constant ε (relative to the vacuum) of 
the medium (Smythe 1950, section 2.11).

The polarizability tensor components for conducting spheroids are known (Landau and 
Lifshitz 1960, section 4): in terms of the eccentricity e defined by ξ= − =e a c1 / 1 / ,2 2 2

0
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[The factor πε ≈4 111pF m0
-1 converts Gaussian units to SI units; ε0 is the permittivity of 

free space.] The longitudinal and transverse polarizability components both tend to [4πε0]c3 
in the spherical limit (eccentricity e tending to zero, a tending to c). For elongated spheroids 
the longitudinal polarizability dominates, as may be expected. Equations (13) and (14) give 
the torque: proportional to the square of the field, zero when the spheroid is aligned with the 
field or perpendicular to the field, maximum at 45° to the field. The torque always acts to align 
the spheroid with the field. Figure 3 shows equipotentials near a prolate spheroid inclined at 
30° to an external field.

Next we shall examine the retarding torque resulting from viscous drag on the spheroid as 
it tries to align with the field.

4. Rotation of a spheroid in a viscous fluid

We wish to estimate the time that it would take to align a spheroid, moving in a medium of 
viscosity μ, with the applied electric field. From section 3 we know the aligning torque due to 
the field; what is the retarding torque due to the viscous drag of the ambient fluid? For slow 
rotation (we shall verify in section 6 that the Reynolds number is small for cases of inter-
est), the retarding torque is known. Edwardes (1892) treated the slow rotation of ellipsoids 
(semiaxes a, b, c); a multiplicative factor of 5/6 was corrected by Gans (1928). Specialized to 
the prolate spheroid of semiaxes a, a, c, the retarding torque for rotation about a short axis at 
angular frequency ω is

Figure 3. Prolate spheroid inclined at 30° to an external field. The figure shows equipo-
tentials near the spheroid, and the torque on the spheroid (curved arrow).
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As a tends to c, the torque tends to the Kirchhoff value πμωc8 3 for a sphere rotating about an axis 
through its centre. Batchelor (1970) considered the more general case of the rotation of slender 
bodies, with semi-diameters a and c >>  a. His result (Batchelor 1970, equation (8.10)) is
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This result is in agreement with (15) in the limit of e tending to unity from below. The formula 
(2.4) of Shine and Armstrong (1987) is equivalent to (15), although they refer to Edwardes 
and not to Gans.

We note that both the driving torque due to the electric field and the retarding torque due 
to the fluid viscosity are proportional to the volume π π= −a c c e(4 / 3) (4 / 3) (1 )2 3 2  of the 
spheroid, times form factors which depend on the aspect ratio c/a, or equivalently on the eccen-
tricity e. Thus the rate at which these bodies align with the field will be proportional to the field 
strength squared, and inversely proportional to the viscosity of the medium, but will not depend 
on the size of the spheroid, only on its aspect ratio (provided the Reynolds number remains 
small, as discussed below). The angular rotation rate ω(θ), found by equating the driving torque 
(13) [augmented by the dielectric factor ε] and retarding torque (15), can be written in the form
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The form factor F e( ) , defined by (14) and (17), tends to zero for small eccentricity, since 
the electric torque on a spherical object is zero. For →e 1, the case of interest, the form 
factor is nearly unity. The behaviour of F e( ) over the whole range of eccentricity is shown 
in figure 4.

The region of validity of (17) is restricted to low Reynolds number, which varies along the 
spheroids, since the velocity relative to the ambient fluid is proportional to the distance from 
the axis of rotation. The maximum Reynolds number, at the tip of the spheroid, is of order
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When we put in the viscosity of blood at 37 °C, μ ≈ 35 milli-dyne s cm−2 =3.5 mPa s, the den-
sity of blood (ρ) equal to that of water, the dielectric constant likewise that of water ε ≈( 80) , 
the form factor F approximately unity, and an external electric field of 2 volts per micron, we 
find that the Reynolds number is less than unity provided the spheroids have the longer semi-
axis c about 3 microns or smaller.

From ω θ Ω θ θ θ= = − t( ) sin cos d / d  (the spheroid rotates under the influence of the field 
to decrease the angle θ between its long axis and the field), we can estimate the time for rota-
tion of the spheroid from angle θ0 to angle θ by integration: it is

 Ω θ θ= −t ln[tan / tan ]1
0 (19)
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For example, the time to rotate from θ0 = 60° to θ = 30° will be Ω Ω≈− −ln[3] 1.1 .1 1

For the parameters just used to estimate the c value for which the Reynolds number is unity, 
we find Ω−1 to be about 2.5 μs. Thus the external field, if pulsed, should have a cumulative 
‘on’ time of 10 μs or more. Alternating fields will also align the spheroids, since the torque is 
proportional to the square of the field and always acts to align the spheroid long axis with the 
field. A similar or longer ‘on’ time is required to align the micro-conductors.

5. Thermal motion, and the optimum size of spheroidal micro-electrodes

What would be the optimum size of the elongated conductors injected together with anti- 
cancer drugs? If large they will be unnecessarily invasive, and will not orient easily in the 
patient’s body tissue; also the formulae for viscous drag we gave apply only if the long semiaxis 
is no more than a few microns, as we saw in the estimate given below (18). If the micro-con-
ductors are too small their orientation with the external field, necessary for field amplification, 
will be disrupted by Brownian motion. We can use the electrostatic energy (10) to estimate the 
magnitude of the thermal disruption of orientation: the difference in energy between a spheroid 
oriented with the field and one oriented at angle θ to the field has the magnitude

 Δ ε α α θ= −W E ( ) sint
1

2 0
2

ℓ
2 (20)

We have inserted the dielectric constant ε of the medium into (20), as noted below equa-
tion (13). Thermal motion at absolute temperature T will produce misalignment from the field 
direction given by equating (20) to the thermal energy ½kT associated with one degree of 
freedom (in this case of rotation about an axis perpendicular to the electric field).

For blood at 37 °C (310 K), with ε ≈ 80, external electric field strength 2 MV m−1, and  
c = 1 μm, equating (20) to ½kT gives θ ≈ 1 mrad. At this field strength, thermal disruption of 
the spheroidal micro-conductors is negligible provided the larger semi-axis c is substantially 
larger than about 10 nm (this value of c gives ε α α− ≈E kT( )t0

2
ℓ ).

Table 1 gives representative rotation times Ω−1 and upper and lower limits on semi-major 
axis values c for external fields ranging from 0.2–2 MV m−1 (2–20 kV cm−1). The Ω−1 values 
are obtained from (17) with F(e) approximated by unity (compare figure 4), and with the vis-
cosity of blood at 37 °C. The estimates of largest permissible c values which keep the Reynolds 
number below unity is obtained by setting (18) less than or equal to unity, which restricts the 

Figure 4. The form factor F(e) defined by (17), versus the eccentricity e. The eccentricities 
corresponding to figures 2 and 3 (e = 12/13 ≈ 0.923), and that giving a field magnifica-
tion of 100 (figure 1, e ≈ 0.998) are indicated by diamonds and vertical dashed lines.
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product E0c to be less than 6 V. The lower limit on c comes from limiting the thermal disrup-
tion of the orientation of the micro-conductors. We set the electrostatic energy ten time greater 
than the thermal energy, ε α α− ≈E kT( ) 10 ,t0

2
ℓ  and take the c/a ratio to be 15.7 (to give a field 

amplification factor of 100 at the spheroid ends); for this aspect ratio α α− ≈ c0.13tℓ
3 from 

(14). From the Table we see that, at 2 MV m−1, any spheroidal conductor semi-axis size from 
about 20 nm to a few microns would be suitable for enhancement of electroporation.

A Reviewer has suggested that the Joule heating in the micro-conductors also needs to be 
estimated. It turns out to be negligible, as the following rough argument shows. The dipole 
moment p may be approximated for elongated spheroids as 2cQ, c being the longer semi-axis, 
and +Q, −Q the charges near each end. The current I is dQ/dt, and gives the Joule heating 
I2R, where R is the spheroid resistance to internal current flow. For iron spheroids with c = 1 
micron and aspect ratio 15.69, R is about 15 Ω. By taking a cycle average for an oscillatory 
external field (angular frequency ω), one obtains the Joule heating per cycle. When the sphe-
roid is nearly aligned with the external field, the operative polarizability is the longitudinal 
one, so the dipole moment p is nearly equal to the longitudinal polarizability times the elec-
tric field. The dominant dimensional factors in the ratio of the Joule heating per cycle to the 
electrostatic orientation energy given by (20) are ωρ πε4 .0  The resistivity ρ for iron is about 
10−7 Ω m = 10−7 s m F−1, and πε4 0 is about 10−10 F m−1. Thus the ρ πε4 0 product is about 10−17 s, 
and hundreds of billions of cycles at megahertz frequency would be needed to make the total 
Joule heating comparable to the electrostatic orientation energy.

6. Discussion

We have investigated a form of electroporation cancer therapy, in which the electric field is 
enhanced by injection of internal micro-conductors together with anticancer drugs. To this 
end, we have studied the field amplification at a conducting prolate spheroid, the torque acting 
on the spheroid at arbitrary orientation due to the external field (which always tries to align it 
with the field), the viscous forces retarding its rotation, and also the thermal disruption of the 
orientation of the optimal orientation.

The model of prolate spheroids in a viscous medium is clearly a great simplification of the 
reality. However, the author believes that it can be useful to have exact results (in the present 
case for the field amplification, torque due to field and retarding torque due to viscous drag) as 
bench marks, even if they are necessarily for idealized situations. A worker in electroporation 
can at least know precisely what the field amplification and torques are for a given aspect ratio 
of a prolate spheroid, for example. To illustrate this point, consider equation  (1) of (Rojas-
Chapana et al 2004), which estimates the field enhancement at the end of a straight nanotube 
to be 3 times its length divided by its diameter. [An average value is surely intended, because 
the field near the end of a nanotube varies rapidly with position.] For a prolate spheroid this 
estimate would give 3c/a (correct in the spherical limit), whereas the exact formula (8) gives, 
for c large compared to a,

Table 1. Representative rotation times Ω−1 and upper and lower limits on semi-major 
axis values c for external fields ranging from 0.2–2 MV m−1 (2–20 kV cm−1).

External field 0.2 0.5 1 2 E0 (V μm−1)
Rotation time 250 40 10 2.5 Ω−1(μs)
Largest c 30 12 6 3 cmax (μm)
Smallest c 95 52 33 20 cmin (nm)
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The first term of (21) gives a field magnification of 100.654 when c/a = 15.69164 (100 is the 
exact value), whereas the approximation 3c/a is both analytically and numerically incorrect.

A point raised by a Reviewer is that the field amplification factor will be different in the the 
neighbourhood of a cell membrane (lipid bilayer). The field surrounding a spheroid which is 
near a cell wall is difficult to calculate. However, since the micron-sized spheroids are large 
compared to the thickness of the cell membrane (about 5 nm), the situation where one end of 
the spheroid is close to the cell can be approximated by that of a point charge near a planar cell 
membrane, discussed in the Appendix. Figure 5 shows the electric potential outside and inside 
a membrane 5 nm thick, when the charge is 10 nm away from the left side of the membrane. 
The dielectric constants of the plasma and cytoplasm (outside and inside the cell) and of the 
membrane are taken to be ε ≈ 80,p  ε ≈ 2m  (Gabriel et al 1996, Markx and Davey 1999, Sudsiri 
et al 2007). The membrane dielectric value is at the low end of estimated values, so the effect 
of the membrane as shown in figure 5 is the largest possible, as the dielectric contrast between 
membrane and plasma or cytoplasm assumes its largest quoted value. The field just inside 
the membrane is larger than that just outside by the factor ε ε ≈/ 40p m  (at both boundaries), 
because of the continuity of εE at the interface. Note that the electric field (the slope of the 
potential curve) is nearly constant inside the membrane in the case illustrated; for a uniform 
external field it would be constant, inside and outside.

Of course the tissue surrounding cancer cells, unless blood, is generally is not well approxi-
mated by a viscous fluid. There will be elastic response to deformation in general. This is 
much harder to estimate, but one can say that the rotation of micro-electrodes will be more 
impeded than by viscosity alone. Therefore the calculations given provide an upper limit on 
the rotation rates, and also on the thermal motion of the micro-electrodes.

Taking an aspect ratio such that the field amplification at the sharp ends of the spheroid is 
by a factor of 100 when the spheroid is oriented along the field, a possible range of the long 

Figure 5. The potential of a point charge (at the origin, to the left of the diagram), out-
side and inside a membrane of 5 nm thickness. The membrane face nearer the charge is 
at separation 10 nm from the charge. The potential shown is along the line normal to the 
membrane and passing through the charge. The smooth curve shows what the potential 
would be in the absence of the membrane.
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semi-axis lengths for the conducting spheroids is 0.02–3 microns, assuming a fluid medium 
with the viscosity of blood and an external field of 2 MV m−1.

It will clearly be advantageous for the patient if the injected micro-electrodes are biode-
gradable and as small as practicable (within the ranges given in table 1). Sub-micron iron 
spheroids may be removed quickly enough by oxidation. Another possibility is the use of 
electrospun conductive polypyrrole nanofibres (Chronakis et al 2006, Lee et al 2009), which 
can be made largely biodegradable as polypyrrole-polylactide conductors (Shi et al 2008).

The author (a physics theorist) hopes that an in vitro trial will test the proposal presented here.
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Appendix: point charge near a dielectric plate

This problem is solved in full generality by Smythe (Smythe 1950, section 5.303), but the 
potential involves infinite integrals over Bessel functions which are lengthy to evaluate numer-
ically. We shall give a closed-form solution for the potential along the line perpendicular to the 
membrane passing through the charge, namely along the z-axis in figure 6.

Smythe gives only the potential V r z( , )3  explicitly; we shall state them all for completeness:

 ∫ε
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Figure 6. A point charge Q (at the origin of coordinates), separated by distance s from 
the near side of a planar membrane, which is of thickness t. The dielectric constant on 
either side of the membrane is εp; inside the membrane it is ε .m
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Here = +r x y2 2 2 : r is the distance from the z-axis. The quantity χ is given by

 χ
ε ε
ε ε

=
−
+

m p

m p
(A4)

Along the z-axis =r( 0) the expansion

 ∑χ χ− =− −

=

∞
−[1 e ] ekt

n

n nkt2 2 1

0

2 2 (A5)

and integration over k reduces all the integrals to infinite sums. For example (we restrict our-
selves to the region >z 0 throughout),

 ∑ε
χ χ= −

+=

∞V z

Q nt z

(0, )
(1 )

2
p

n

n
3 2

0

2

(A6)

If we write χS t z( , , ) for the sum in (A6), differentiation with respect to χ leads to the partial 
differential equation

 χ χ χ∂ + = −χ
− − −S

z

t
S t( ) (1 )1 1 2 1

(A7)

The solution of (A7) satisfying the condition = −S t z z( , , 0) 1 is

 χ χ= +⎜ ⎟
⎛
⎝

⎞
⎠S t z

z
F

z

t

z

t
( , , )

1
1,

2
; 1

2
; 2 (A8)

where F is the hypergeometric function. All of the potentials can be expressed in terms of S:

 
ε
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V z

Q z
S t s z S t s t z
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The electric fields are given by = −∂E Vz z  in each of the three regions. At the boundaries we 
have the ratio ε ε/p m between the fields:

 ε ε ε ε= + = +E s E s E s t E s t( ) ( ) , ( ) ( )p z m z m z p z
(1) (2) (2) (3) (A12)

Of course, the equalities (A12) are incorporated into the solution as the continuity of the 
normal value of the displacement at the boundaries. As the charge approaches the membrane 
the field just outside the membrane tends to χ ε ε ε+ = +1 2 / ( )m p m  times the field that would 
be there in the absence of the membrane. The field just inside the membrane is larger than that 
outside by the factor ε ε/ ,p m  as always.
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